60. On the Example of an Inhomogeneous Partial Differential Equation without Distribution Solutions

By Taira SHIROTA

Osaka University

(Comm. by K. KUNUGI, M.J.A., May 13, 1961)

1. Let Ω be a domain in Euclidean *n*-space and let P be a partial differential operator with constant coefficients.

Here we consider the distribution equation

$$PS = F$$
 (1)

where F is a given distribution in $D'(\Omega)$ and S is the solution in $D'(\Omega)$. It was shown by B. Malgrange [1] that for elliptic operators P and for any domain Ω there is a solution S of (1) and that for hypoelliptic operators P the existence theorem is always valid whenever Ω is a P-convex domain, i.e. to every compact set $K \subset \Omega$ there exists another compact set $K' \subset \Omega$ such that supp $\varphi \subset K'$ for every $\varphi \subset \mathfrak{D}(\Omega)$ such that supp $P'\varphi \subset K$. Furthermore it is easily shown applying usual methods used by several authors that for any geometrically convex domain Ω and for any P the existence theorem is also valid.

In the present note I shall show using a result of \mathbf{F} . John's that for the hyperbolic operator the existence theorem is not true for some P-convex domain.

2. To show a counter example we use the following

Lemma 1. Let Ω_i be a bounded subdomain of a domain $\Omega \subset R_n$ such that

 $\Omega \supset \overline{\Omega}_i \oplus \Omega_{i+1}$ for any integer $i=1, 2, \cdots$, and let K_i be (n-1)-dim surfaces such that

$$K_i \subset \mathcal{Q}_i - \overline{\mathcal{Q}}_{i-1},$$

 $K_i \rightarrow a$ part of the boundary $\dot{\Omega}$ of Ω .

Furthermore we assume that for some increasing sequence $\{s_i\}$ of integers there exist functions f_i such that

 $\operatorname{supp} f_i \subset \Omega_i$

$$f_i \in C^{s_i - 1}(\Omega_i), \tag{3}$$

$$f_i \in C^{\bullet_i}(U(K_i) - K_i), \qquad (4)$$

but for some D^{s_i} ,

$$D^{*i}f_i \notin L_{p_i}(U(K_i))$$
 (\$\infty\$ > \$p_i > 1\$), (5)

where $U(K_i)$ is an open set, and $P'f_i \in C^{s_i - p}(\Omega_i) \frown C^{\infty}(\Omega_i - K)$ (6)

where p is the degree of P and K is a fixed compact subset of Q.

Then there exists a distribution F such that (1) has no distribution solutions for Ω .

(2)