74. On the Dimension of an Orbitspace

By Takashi Karube
Faculty of Engineering, Gifu University
(Comm. by K. Kunugi, m.J.A., June 12, 1961)

Let G be a locally compact transformation group satisfying the second axiom of countability and acting on a locally compact Hausdorff space M, and H be a compact invariant subgroup of G. Then in a natural way the set of all orbits under H becomes a locally compact Hausdorff space, which is called "the orbit-space of M under H " and denoted by $D(M ; H)$, and the factor group $G^{*}=G / H$ acts on $D(M ; H)$ as a transformation group (cf. [4], p. 61). In this note we prove that

$$
\begin{equation*}
\operatorname{dim} G(x)=\operatorname{dim} H(x)+\operatorname{dim} D(G(x) ; H) \quad \text { for } x \in M \tag{A}
\end{equation*}
$$

This is a generalization of a result obtained by Montgomery and Zippin ([5], p. 783, cf. Corollary of the present note). If $G(x)$ is finite dimensional, then $D(G(x) ; H)$ is locally the topological product of a Euclidean cube by a zero dimensional set closed in $D(G(x) ; H)$ (cf. Karube [3]); so that the equation (A) gives us the almost complete knowledge about the local topology of such an orbit-space as the above.

We now prove the equation (A).

1) Let G be finite dimensional. Let p be the natural projection of M onto $D(M ; H)$, and \tilde{x} the image of the point x under p. Let π be the natural mapping of G onto G^{*}, F^{*} the group of all elements of G^{*} leaving the point \tilde{x} fixed, and F the complete inverse image of F^{*} under π. It is easy to see that $F(x)=H(x)$ and $G_{x}=F_{x}$ where G_{x} and F_{x} are stability subgroups of the point x. By the theorems of Yamanoshita [6] we have

$$
\begin{aligned}
& \operatorname{dim} G=\operatorname{dim} F+\operatorname{dim} G / F, \\
& \operatorname{dim} G=\operatorname{dim} G(x)+\operatorname{dim} G_{x}, \\
& \operatorname{dim} F=\operatorname{dim} F(x)+\operatorname{dim} F_{x}=\operatorname{dim} H(x)+\operatorname{dim} G_{x}, \\
& \operatorname{dim} G / F=\operatorname{dim} G^{*} / F^{*}=\operatorname{dim} G^{*}(\tilde{x})=\operatorname{dim} D(G(x) ; H) .
\end{aligned}
$$

Since G_{x} is finite dimensional, we have (A).
2) Let $G(x)$ be finite dimensional. There exists an open subgroup G^{\prime} of G such that G^{\prime} / G_{0} is compact where G_{0} is the identity component of G. Since $G^{\prime}(x)$ is finite dimensional, G^{\prime} is effectively finite dimensional on $G^{\prime}(x)$. In fact, there must be a connected compact invariant subgroup K^{\prime} of G^{\prime} which is idle on $G^{\prime}(x)$ and such that G^{\prime} / K^{\prime} is finite dimensional (cf. [3]). Let G_{1}^{\prime} be the factor group G^{\prime} / K^{\prime}, ρ the natural mapping of G^{\prime} onto $G_{1}^{\prime}, H^{\prime}$ the intersection of H and G^{\prime}, and H_{1}^{\prime} the image of H^{\prime} under ρ. Since G_{1}^{\prime} is finite dimensional we have

