By Takashi KARUBE

Faculty of Engineering, Gifu University (Comm. by K. KUNUGI, M.J.A., June 12, 1961)

Let G be a locally compact transformation group satisfying the second axiom of countability and acting on a locally compact Hausdorff space M, and H be a compact invariant subgroup of G. Then in a natural way the set of all orbits under H becomes a locally compact Hausdorff space, which is called "the orbit-space of M under H" and denoted by D(M; H), and the factor group $G^* = G/H$ acts on D(M; H)as a transformation group (cf. [4], p. 61). In this note we prove that $\dim G(x) = \dim H(x) + \dim D(G(x); H)$ for $x \in M$. (A) This is a generalization of a result obtained by Montgomery and Zippin ([5], p. 783, cf. Corollary of the present note). If G(x) is finite dimensional, then D(G(x); H) is locally the topological product of a Euclidean cube by a zero dimensional set closed in D(G(x); H) (cf. Karube [3]); so that the equation (A) gives us the almost complete knowledge about the local topology of such an orbit-space as the above.

We now prove the equation (A).

1) Let G be finite dimensional. Let p be the natural projection of M onto D(M;H), and \tilde{x} the image of the point x under p. Let π be the natural mapping of G onto G^* , F^* the group of all elements of G^* leaving the point \tilde{x} fixed, and F the complete inverse image of F^* under π . It is easy to see that F(x)=H(x) and $G_x=F_x$ where G_x and F_x are stability subgroups of the point x. By the theorems of Yamanoshita [6] we have

> $\dim G = \dim F + \dim G/F,$ $\dim G = \dim G(x) + \dim G_x,$ $\dim F = \dim F(x) + \dim F_x = \dim H(x) + \dim G_x,$ $\dim G/F = \dim G^*/F^* = \dim G^*(\tilde{x}) = \dim D(G(x); H).$

Since G_x is finite dimensional, we have (A).

2) Let G(x) be finite dimensional. There exists an open subgroup G' of G such that G'/G_0 is compact where G_0 is the identity component of G. Since G'(x) is finite dimensional, G' is effectively finite dimensional on G'(x). In fact, there must be a connected compact invariant subgroup K' of G' which is idle on G'(x) and such that G'/K' is finite dimensional (cf. [3]). Let G'_1 be the factor group G'/K', ρ the natural mapping of G' onto G'_1 , H' the intersection of H and G', and H'_1 the image of H' under ρ . Since G'_1 is finite dimensional we have