71. Inverse Images of Closed Mappings. I

By Sitiro HANAI

Osaka University of Liberal Arts and Education (Comm. by K. KUNUGI, M.J.A., June 12, 1961)

Let f be a closed continuous mapping of a topological space Xonto a topological space Y. It is well known that if Y is paracompact and $f^{-1}(y)$ is compact for each point y of Y, then X is paracompact [2,3]. It is interesting to know under what conditions the topological properties of Y may be preserved by the inverse mapping f^{-1} . H. Tamano [7] has recently obtained the necessary and sufficient condition that the inverse image space $X=f^{-1}(Y)$ be normal where X and Y are completely regular T_1 -spaces and Y is paracompact.

In this note, we shall investigate the compactness of the inverse image space $X=f^{-1}(Y)$ under the closed continuous mapping f.

In the first place, let us quickly recall some definitions which were introduced by K. Morita [5]. For any infinite cardinal number m, a topological space X is said to be m-paracompact if any open covering of X with power $\leq m$ (i.e. consisting of at most m sets) admits a locally finite open covering as its refinement. A topological space X is called m-compact if every open covering of power $\leq m$ has a finite subcovering.

Theorem 1. If f is a closed continuous mapping of a topological space X onto an m-paracompact (m-compact) topological space Y such that the inverse image $f^{-1}(y)$ is m-compact for every point y of Y, then X is m-paracompact (m-compact).

Proof. Let $\mathfrak{U}_{2}|\lambda\in\Lambda$, $|\Lambda|\leq\mathfrak{m}$ be an open covering of X where $|\Lambda|$ denotes the power of Λ . And let Γ be the family of all finite subsets γ of Λ , then $|\Gamma|\leq\mathfrak{m}$. Since $f^{-1}(y)$ is \mathfrak{m} -compact for every point y of Y, there exists a finite subset γ of Λ such that $f^{-1}(y) \subset U_{2}$. Let $V_{7}=Y-f(X-\bigcup U_{2})$, then V_{7} is open by the closedness of f and $y\in V_{7}$ and $f^{-1}(V_{7})\subset U_{2}$. Therefore $\mathfrak{B}=\{V_{7}\mid\gamma\in\Gamma\}$ is an open covering of Y with power $\leq\mathfrak{m}$. If Y is \mathfrak{m} -paracompact (\mathfrak{m} -compact), then there exists a locally finite (finite) open refinement $\{W_{\delta}\mid\delta\in\Lambda\}$ of \mathfrak{B} . Since, for each δ there exists a $\gamma_{\delta}\in\Gamma$ such that $f^{-1}(W_{\delta})\subset f^{-1}(V_{7_{\delta}})$ $\subset \bigcup_{\lambda\in\gamma_{\delta}}U_{\lambda}, \{f^{-1}(W_{\delta})\cap U_{7}\mid\delta\in\Lambda,\lambda\in\gamma_{\delta}\}$ is a locally finite (finite) open refinement 1, we have the following corollaries (see [2,3,1]).

Corollary 1.1. If f is a closed continuous mapping of a topological space X onto a paracompact topological space Y such that