70. Remarks on Knots with Two Bridges

By Kunio Murasugi
Hosei University, Tokyo
(Comm. by K. Kunugi, m.J.A., June 12, 1961)

§1. Introduction. In 1954, H. Schubert introduced the new numerical knot invariant, called the bridge number of the knot [6]. Then he completely classified the knots with two bridges [7]. He assigned two integers α and β to a knot k with two bridges. α is called a torsion, which is the same as the well-known second torsion number of k, and the other β is called "Kreuzungsklasse", whose new interpretation will be given in §2 in this note. As indicated by Schubert, the pair (α, β) will be called the normal form of k, where $\alpha>|\beta|>0$. After §3 the non-cyclic covering space \mathscr{F} unbranched along k will be considered following Bankwitz and Schumann [1]. Their discussion indicating that \mathscr{F} characterizes the knot plays an important role in classifying two knots of the same Alexander polynomial, as has been shown in their paper [1]. In §4 it will be shown that the Alexander polynomial over the Betti group of \mathscr{F} can be found based on the results in $\S 3$ following [3, III].
§ 2. Group presentation. Let k be a knot with two bridges of the normal form (α, β) and let K be its bridged projection. Let G be the knot group of k. The presentation of G will now be given based on K. K has $4 p$ double points in which $2 p$ double points lie in $A B$ and the others lie in $C D$, where $A B, C D$ are the bridges. These $4 p$ double points will be named $X_{1}, X_{2}, \cdots, X_{2 p}$ on $A B$, and Y_{1}, $Y_{2}, \cdots, Y_{2 p}$ on $C D$ in order of the direction of K starting at A. Then the over-presentation of G will be given by $G=(a, b: R, S)$,
 -1 for all i, j, and M is an element of G of the same type as L (cf. [4]), i.e. G is a group generated by two generators a, b and has two defining relations $R=1, S=1$. Since one of R, S is implied by the other, G can be considered as the group of a single defining relation R. And $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{p}$ are defined as 1 or -1 depending on whether $A B$ overpasses at $Y_{1}, Y_{2}, \cdots, Y_{p}$ from left to right or from right to left, and $\eta_{1}, \eta_{2}, \cdots, \eta_{p}$ are defined similarly. Thus it follows that
(2.1) G has a presentation as follows:

$$
G=(a, b: R) \text {, where } R=L a L^{-1} b^{-1} .
$$

In connection with this presentation, it follows that

$$
\begin{equation*}
2 p+1 \text { equals } \alpha \text {. } \tag{2.2}
\end{equation*}
$$

