66. On Some Properties of Fractional Powers of Linear Operators

By Jiro WATANABE

Mitsubishi Atomic Power Industries, Tokyo, Japan (Comm. by Z. SUETUNA, M.J.A., June 12, 1961)

A class of linear operators in a Banach space X is considered in a note by T. Kato.¹⁾ A linear operator A in X is said to be of type (ω, M) , if A is densely defined and closed, the resolvent set of -Acontains the open sector $|\arg \lambda| < \pi - \omega$, $0 < \omega < \pi$, and $\lambda(\lambda + A)^{-1}$ is uniformly bounded in each smaller sector $|\arg \lambda| < \pi - \omega - \varepsilon$, $\varepsilon > 0$, in particular $\lambda || (\lambda + A)^{-1} || \le M$, $\lambda > 0$. The fractional power A^{α} , $0 < \alpha < 1$, of A is defined by Kato through

$$(\lambda+A^{\alpha})^{-1}=\frac{\sin \pi\alpha}{\pi}\int_{0}^{\infty}\frac{\mu^{\alpha}}{\lambda^{2}+2\lambda\mu^{\alpha}\cos \pi\alpha+\mu^{2\alpha}}(\mu+A)^{-1}d\mu,$$

where λ is in the sector $|\arg \lambda| < (1-\alpha)\pi$, and is shown to be of type $(\alpha \omega, M)$.

K. Yosida²⁾ gave an example showing that $(A^2)^{1/2} \neq A$ where -Aand $-A^2$ are infinitesimal generators of strongly continuous semigroups. In this paper we shall prove, however, that $(A^{\alpha})^{\beta} = A^{\alpha\beta}$, $0 < \alpha$, $\beta < 1$. We shall also prove that the semi-group $\{\exp(-tA^{\alpha})\}$ generated by $-A^{\alpha}$ is continuous with respect to α in the uniform operator topology. This result overlaps with A. V. Balakrishnan's result³⁾ which says that $A^{\alpha}x$ is, for $x \in \mathfrak{D}(A)$, left-continuous at $\alpha = 1$.

Theorem 1. Let A be of type (ω, M) , then $(A^{\alpha})^{\beta} = A^{\alpha\beta}, \quad 0 < \alpha, \beta < 1.$ Proof. For any μ in the sector $|\arg \mu| < (1-\beta)\pi$ $(\mu + (A^{\alpha})^{\beta})^{-1} = \frac{1}{(2\pi i)^2} \int_0^{\infty} \left(\frac{1}{\mu + \lambda^{\beta} e^{-i\pi\beta}} - \frac{1}{\mu + \lambda^{\beta} e^{i\pi\beta}}\right) d\lambda$ (1) $\int_0^{\infty} \left(\frac{1}{\lambda + \zeta^{\alpha} e^{-i\pi\alpha}} - \frac{1}{\lambda + \zeta^{\alpha} e^{i\pi\alpha}}\right) (\zeta + A)^{-1} d\zeta.$

The double integral being absolutely convergent, we may interchange the order of the integration. Since we obtain

$$\frac{1}{2\pi i}\int_{0}^{\infty} \left(\frac{1}{\mu+\lambda^{\theta}e^{-i\pi\theta}}-\frac{1}{\mu+\lambda^{\theta}e^{i\pi\theta}}\right) \left(\frac{1}{\lambda+\zeta^{\alpha}e^{-i\pi\alpha}}-\frac{1}{\lambda+\zeta^{\alpha}e^{i\pi\alpha}}\right) d\lambda$$

1) T. Kato: Note on fractional powers of linear operators, Proc. Japan Acad., **36**, 94-96 (1960).

2) K. Yosida: Fractional powers of infinitesimal generators and the analyticity of the semi-groups generated by them, Proc. Japan Acad., **36**, 86-89 (1960).

3) A. V. Balakrishnan: Fractional powers of closed operators and the semi-groups generated by them, Pacific J. Math., 10, 419-437 (1960).