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Consider a semigroup G satisfying
(1.1) There is at least one (left identity) eeG such that ea--a

for all aeG.
(1.2) For any aeG and for any left identity eeG there is at

least one beg such that ab--e.
A.H. Clifford [1] and H.B. Mann 2] investigated such systems

and they obtained the same result" the system is the direct product
of a right singular semigroup and a group. Clifford called such
systems multiple groups, Mann called them (l, r) systems, but we
call them right groups. In this note we shall define an M-groupoid
as generalization of right groups and shall study the conditions for
M-groupoids.

DEFINITION. An M-groupoid S is a groupoid’ (Bruck [4])which
satisfies the following conditions"

(2.1) There is at least one eeS such that ex--x for all xeS.
(2.2) If y or z is a left identity of S, then (xy)z=x(yz) for all

zeS.
(2.3) For any xeS there is a unique left identity e (which may

depend on x) such that xe=x.
THEOREM 1. An M-groupoid S is the direct product of a right

singular semigroup and a groupoid with a two-sided identity, and
conversely.

For the proof of this theorem we use the following lemma"
LEMMA. If and only if a groupoid S has two orthogonal de-

compositions, it is isomorphic to the direct product of the two factor
groupoids obtained from the two decompositions.

Clifford introduced the notation "orthogonal decomposition" in
his paper 1], p. 869, but he did not apply the principle directly.
Although this lemma is obvious according to K. Shoda [3J, p. 158,
we can easily prove it with elementary method.

DEFINITION. A right group S is a groupoid which satisfies the
following conditions"

(3.1) For any x, y, zS, (xy)z-x(yz)
(3.2) For any a, be S, there is a unique ceS such that ac--b.

1) The detail proof will be given elsewhere.
2) A groupoid is a system in which a binary operation is defined.


