114. Note on the Direct Product of Certain Groupoids ${ }^{1)}$

By Takayuki Tamura, R. B. Merkel, and J. F. Latimer
University of California, Davis, U.S.A.
(Comm. by K. Shoda, m.J.A., Oct. 12, 1961)
Consider a semigroup G satisfying
(1.1) There is at least one (left identity) $e \in G$ such that $e a=a$ for all $a \in G$.
(1.2) For any $a \in G$ and for any left identity $e \in G$ there is at least one $b \in G$ such that $a b=e$.
A. H. Clifford [1] and H. B. Mann [2] investigated such systems and they obtained the same result: the system is the direct product of a right singular semigroup and a group. Clifford called such systems multiple groups, Mann called them (l, r) systems, but we call them right groups. In this note we shall define an M-groupoid as generalization of right groups and shall study the conditions for M-groupoids.

Definition. An M-groupoid S is a groupoid ${ }^{2)}$ (Bruck [4]) which satisfies the following conditions:
(2.1) There is at least one $e \in S$ such that $e x=x$ for all $x \in S$.
(2.2) If y or z is a left identity of S, then $(x y) z=x(y z)$ for all $x \in S$.
(2.3) For any $x \in S$ there is a unique left identity e (which may depend on x) such that $x e=x$.

Theorem 1. An M-groupoid S is the direct product of a right singular semigroup and a groupoid with a two-sided identity, and conversely.

For the proof of this theorem we use the following lemma:
Lemma. If and only if a groupoid S has two orthogonal decompositions, it is isomorphic to the direct product of the two factor groupoids obtained from the two decompositions.

Clifford introduced the notation "orthogonal decomposition" in his paper [1], p. 869, but he did not apply the principle directly. Although this lemma is obvious according to K. Shoda [3], p. 158, we can easily prove it with elementary method.

Definition. A right group S is a groupoid which satisfies the following conditions:
(3.1) For any $x, y, z \in S,(x y) z=x(y z)$
(3.2) For any $a, b \in S$, there is a unique $c \in S$ such that $a c=b$.

1) The detail proof will be given elsewhere.
2) A groupoid is a system in which a binary operation is defined.
