110. On the Distribution of the Spectra of Normal Operators in Hilbert Spaces

By Sakuji Inoue
Faculty of Education, Kumamoto University
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1961)

We shall define in advance the symbols, which will be used in this paper, as follows:

Definition. Let \mathfrak{y} be the complex abstract Hilbert space which is complete, separable and infinite dimensional; let N be a normal operator in \mathfrak{g}; let $\rho(N), \sigma(N)=\left\{z_{v}\right\}_{\nu=1,2 \ldots}$ and $\Delta(N)$ be the resolvent set, the point spectrum and the continuous spectrum of N respectively; let $\{K(z)\}$ be the complex spectral family associated with N; let K_{ν} be the eigenprojector of N corresponding to the eigenvalue z_{ν}; and let 0_{0} and 0_{e} be the null operator and the null element in $\mathfrak{5}$ respectively.

We now suppose that λ_{0} belongs to $\Delta(N)$ but not to the set of accumulation points of $\sigma(N)$. Then, by applying the factorization of $K(z)$ by the spectral families of the self-adjoint operators $\frac{1}{2}\left(N+N^{*}\right)$ and $\frac{1}{2 i}\left(N-N^{*}\right)$ on $\mathfrak{D}(N)$, we can first verify that λ_{0} is not an isolated point of $\Delta(N)$. If we next denote by $\Delta_{\varepsilon, \lambda_{0}}$ the intersection of $\Delta(N)$ and a suitably small ε-neighborhood of λ_{0}, then, by the application of this result and the fact that $\rho(N)$ is an open set, we can find that the points of $\Delta_{\varepsilon, \lambda_{0}}$ are continuously distributed. In addition, there is no difficulty in showing that the dimension of $K\left(\Delta_{\varepsilon, \lambda_{0}}\right) \mathscr{2}$ is denumerably infinite, however small $\varepsilon>0$ may be. After these preliminaries, we shall turn to our purpose.

Theorem 1. Let D be a domain in the complex λ-plane whose boundary ∂D is a rectifiable closed Jordan curve. If the closure \bar{D} of D is a subset of the resolvent set $\rho(N)$ of a normal operator N in \mathfrak{K}, then

$$
\begin{equation*}
\int_{\lambda D}(\lambda I-N)^{-1} d \lambda=0_{0} \tag{1}
\end{equation*}
$$

where the curvilinear integration is taken in the counterclockwise direction; and if, conversely, (1) holds, D is a subset of $\rho(N)$.

Proof. We now divide ∂D into n pieces by points $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ on itself and let $\left|\lambda_{\alpha+1}-\lambda_{\alpha}\right| \rightarrow 0,\left(\alpha=1,2, \cdots, n ; \lambda_{n+1}=\lambda_{1}\right)$, by allowing n to become infinite. Then, remembering the facts that $\int_{\partial D} \frac{d \lambda}{\lambda-z}=0$ or $2 \pi i$, according as z lies outside or inside ∂D, and that $\rho(N)$ is an

