[Vol. 37, 462

109. On a Theorem of Levine

By Hisashi CHODA and Katuyosi MATOBA

Osaka Gakugei Daigaku

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1961)

1. Following after the notation of Terasaka, let a and i be the closure and interior operations on a topological space E respectively:

1) $A^{aa}=A^a$,

- 1') $A^{ii}=A^i$,
- 2) $(A \smile B)^a = A^a \smile B^a$, $(A \frown B)^i = A^i \frown B^i$,
- 3) $A \leq A^a$,
- 3') $A \geq A^i$.

4) $O^a = O$.

4') $E^i = E$.

where O is the void set. It is well-known that they are related mutually by i=cac, where c is the complementation.

Very recently, N. Levine [2] proved the following interesting theorem:

THEOREM 1. A subset A of E satisfies

$$A^{ai}=A^{ia}.$$

if and only if there are a clopen set H and a nondense set P such that

$$(2) A=(H-P)\vee (P-H):$$

In short, A satisfies (1) if and only if A is congruent to a clopen set H modulo nondense sets.

Levine proved the theorem for T_1 -spaces. However, the theorem is valid for closure algebras with a few modifications, which will be shown in §2. The remaining part of the proof of the theorem which is contained in §§2-3 is essentially same as that of Levine.

It will be interesting to observe that Levine's theorem has an application which characterizes the Borel sets of a hyperstonean space in terms of the closure and interior operations.

2. The following two identities guarantee that A^c and A^a satisfy (1) whenever A satisfies (1):

$$A^{cai} = A^{cacac} = A^{aic} = A^{ccacacc} = A^{cia}$$

and

$$A^{aia} = A^{ccacaca} = A^{ciaca} = A^{caica} = A^{caica} = A^{cacacca} = A^{caca} = A^{ia} = A^{ai} = A^{aai}$$

Consequently, A^i satisfies (1) if A satisfies (1), since i=cac.

It is clear that a nondense set P and a clopen set H satisfy (1), since $P^{ai}=0=P^{ia}$ and $H^{ai}=H=H^{ia}$.

It is also true that H-P satisfies (1) for clopen H and nondense P: If $H>(H-P)^{ia}=(H \cap P^{ci})^a=(H \cap P^{ac})^a$, then

$$E=H\smile H^c>[(H\frown P^{ac})^a\smile (H^c\frown P^{ac})^a]=[(H\smile H^c)\frown P^{ac}]^a=P^{aca}=E$$
 shows a contradiction, whence $H=(H-P)^{ia}$. On the other hand,