No. 8] 459

On Information in Operator Algebras

By Hisaharu UMEGAKI

Tokyo Institute of Technology

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1961)

1. In the present paper, we shall introduce a non-commutative information in an operator algebra. This may be useful for the theory of entropy in quantum statistics (cf. Nakamura-Umegaki [5]).

Let A be a von Neumann algebra with a faithful normal trace τ , and $L^p = L^p(A) = L^p(A, \tau)$ $(p \ge 1)$ be Banach space consisting of all measurable operators a with the finite integral $\tau(|a|^p) < +\infty$, where the norm is defined by $||a||_p = (\tau(|a|^p))^{1/p}$ (cf. Dixmier [1], Segal [6]).

Let S be a set of all normal states σ, ρ, \cdots of A. For any $\sigma \in S$, there exists uniquely an operator $d(\sigma) \in L^1$ such that

$$\sigma(a) = \tau(d(\sigma)a)$$
 for every $a \in A$.

The operator $d(\sigma)$ is so-called Radon-Nikodym derivative (of σ with respect to τ), this is due to Dye [2].

For the real valued function $h(\lambda)$ ($\lambda \ge 0$) such that

(1)
$$h(\lambda) = -\lambda \log \lambda \ (\lambda > 0), = 0 \ (\lambda = 0),$$

an operator function h(a) is defined by

$$h(a) = \int_{0}^{\infty} h(\lambda) dE_{\lambda}$$

for $a \in L^1$ with the spectral resolution $a = \int_0^\infty \lambda dE_\lambda$. Denote

$$(2) H(a) = \tau(h(a))$$

and it is called entropy of the operator a (cf. Nakamura-Umegaki [4]). For any $\sigma \in S$, the entropy $H(d(\sigma))$ of $d(\sigma)$ is denoted by $H(\sigma)$ and it is called the *entropy* of the state σ (cf. Segal [7]).

Segal [7] has proved that the function $H(\sigma)$ over S is concave, and Nakamura-Umegaki [4] has generalized it such as the operator function h(a) over $\{a \in A; a \ge 0\}$ is concave, i.e.

(3)
$$h(\alpha a + \beta b) \ge \alpha h(a) + \beta h(b)$$

for every $a, b \in A$, $a, b \ge 0$ and $\alpha, \beta \ge 0$, $\alpha + \beta = 1$. The inequality (3) is extended to the operators $a, b \in L^1$, $a, b \ge 0$. The entropy H(a) of $a \ge 0$ is uniquely determined as $-\infty \leq H(a) \leq 1$ by a and the trace τ . While, the entropy $H(\sigma)$ of $\sigma \in S$ is determined only by σ and independent from the choice of τ .

In the theory of information, various methods have been introduced and discussed by several authors. In the present case we shall introduce into the von Neumann algebra A the amount of information of Kullback-Leibler [3].