101. On the Existence of Periodic Solutions of DifferenceDifferential Equations

By Shohei Sugiyama
Department of Mathematics, School of Science and Engineering, Waseda University, Tokyo
(Comm. by Z. Suetuna, m.J.A., Oct. 12, 1961)

In a difference-differential equation

$$
\begin{equation*}
x^{\prime}(t+1)=a x(t+1)+b x(t)+w(t) \tag{1}
\end{equation*}
$$

we suppose that a and b are constant, and $w(t)$ is a continuous and periodic function of the period ω for $-\infty<t<\infty$.

Let $K(t)$ be a kernel function of (1), that is, a solution of (1) under the conditions $K(t)=0(-1 \leqq t<0), K(0)=1$, and $w(t) \equiv 0$.

In the sequel, the following condition is always supposed: every real part of all the roots of the characteristic equation

$$
e^{s}(s-a)-b=0
$$

is less than $-\delta$, where δ is a positive constant.
Then, $K(t)$ satisfies the equations

$$
\begin{array}{ll}
K^{\prime}(t+1)=a K(t+1)+b K(t) & (0<t<\infty) \\
K^{\prime}(t)=a K(t) & (0<t<1)
\end{array}
$$

and the inequality

$$
|K(t)| \leqq c e^{-\partial t} \quad(0 \leqq t<\infty)
$$

If we define a function $p(t)$ such that

$$
\begin{equation*}
p(t+1)=\int_{-\infty}^{t} w(s) K(t-s) d s \tag{2}
\end{equation*}
$$

we find that $p(t)$ is a periodic solution of (1) of the period ω, if we formally differentiate (2) and use the periodicity of $w(t)$. This is the fundamental idea in the following discussions.

The purpose of this paper is to discuss the existence of periodic solutions of the equation (1) which has a term $f(t, x, y, \mu)$ or $\mu f(t, x, y)$ instead of $w(t)$. We will establish the following theorems.

Theorem 1. In the equation

$$
\begin{equation*}
x^{\prime}(t+1)=a x(t+1)+b x(t)+f(t, x(t+1), x(t)) \tag{3}
\end{equation*}
$$

where a and b are constant, we suppose that $f(t, x, y)$ satisfies the following conditions;
(i) $f(t, x, y)$ is continuous for any t, x, y and $f(t, 0,0)$ does not identically vanish;
(ii) $f(t, x, y)$ is a periodic function of t of the period ω, where ω is a positive constant;
(iii) $f(t, x, y)$ satisfies Lipschitz condition such that

