132. On L^(k)-Transform and the Generalized Laplace Transform

By Tadashige ISHIHARA

(Comm. by K. KUNUGI, M.J.A., Nov. 13, 1961)

1.*' Let
$$f(\zeta)$$
 be the Laplace transform of the function $F(x)$:

$$f(\zeta) = L(F) = \int_{0}^{\infty} e^{-\zeta x} F(x) dx.$$

If this Laplace integral L(F) is convergent for a complex number ζ , then this means that the function

$$\Phi(x) = \int_0^x e^{-\zeta x} F(x) dx = (e^{-\zeta x} F(x)) * 1$$

has a limit for $x \rightarrow \infty$. Here g(x) * h(x) means

$$\int_{0}^{x} h(\tau) g(x-\tau) d\tau = \int_{0}^{x} h(x-\tau) g(\tau) d\tau.$$

If L(F) is not convergent, then we consider the Cesàro's k th order (C, k) mean of Φ :

$$m_{k}(x) = \frac{k}{x^{k}} \{ (e^{-\zeta x}F) * 1 * x^{k-1} \} = \frac{(e^{-\zeta x}F) * x^{k}}{x^{k}}$$

where k is a positive integer, and for k=0 we put $m_0(x)=\Phi(x)$.

If this mean has a limit for $x \to \infty$, then we say that the Laplace integral is (C, k) convergent for ζ , or for the values ζ the $L^{(k)}$ -transform of F:

$$L^{(k)}(F) = \lim_{x \to \infty} \frac{(e^{-\zeta x}F) * x^k}{x^k}$$
 exists.

The domain of convergence of $L^{(k)}(F)$ is a half plane: $\{\zeta | Re(\zeta) > \beta_k\}$ for some real number $\beta_k(-\infty \le \beta_k \le +\infty)$.

For any pair of positive integers k and k', such that k' > k, the inequality $\beta_{k'} \leq \beta_k$ follows. So, for $k \to \infty$, β_k converges to the limit B. (B can be finite or $\pm \infty$.)

It can appear that $L^{(k)}(F)$ is convergent for the first time for some (large) k, whereas for the other (smaller) k', $L^{(k')}(F)$ do not converge.

The function $L^{(k)}(F)$ is analytic in the interior of the convergent domain $\{\zeta | Re(\zeta) > \beta_k\}$ and coincides with the functions $L^{(k')}(F)$ for k' > k, in the half plane defined by $\{\zeta | Re(\zeta) > \beta_k\}$. The totality of $L^{(k)}(F)$ for $k \ge 0$ defines a function $f(\zeta)$ in the half plane $\{\zeta | Re(\zeta) > B\}$ which we call L^{∞} -transform of F.

Using L^{∞} -transform, thus, we can examine the analytic continuation of L(F) in the domain outside the axis of convergence of

^{*)} See reference G. Doetsch [1]. In 1 our notations conform to those of G. Doetsch.