123. On the Spectra of Some Non-linear Operators. II

By Sadayuki Yamamuro
Yokohama Municipal University
(Comm. by K. Kunugi, m.J.A., Nov. 13, 1961)

In this note, we continue the study on the Hammerstein operators whose spectra contain no intervals. We denote the spectrum of a Hammerstein operator H by $S(H)$. $^{1)}$
§1. Let $f_{i}(x)(i=1,2, \cdots)$ be countable number of real-valued continuous functions with $f_{i}(0)=0$ defined on the whole real line, and $k_{i}(i=1,2, \cdots)$ be countable number of positive numbers. We define an operator H on l^{2} of vectors $\phi=\left(x_{1}, x_{2}, \cdots\right)$ with $\sum_{i=1}^{\infty} x_{i}^{2}<+\infty$ by

$$
\begin{equation*}
H \phi=\left(k_{1} f_{1}\left(x_{1}\right), k_{2} f_{2}\left(x_{2}\right), \cdots\right) . \tag{1}
\end{equation*}
$$

We assume that the range of H is also in l^{2}. This is of Hammerstein type, i.e. $H=K \mathfrak{f}$, where

$$
\mathfrak{\mp} \phi=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \cdots\right)
$$

and K is a matrix of diagonal form.
Theorem 1. Let us assume that the functions $g_{i}(x)=\frac{f_{i}(x)}{x}$ be continuous. Then, for the operator $H \phi$ defined by (1), if $S(H)$ contains no intervals, H must be linear.

Proof. When $k_{1} f_{1}\left(x_{1}\right)=\lambda x_{1}$ for some $x_{1} \neq 0$ and $\lambda \neq 0$, then we consider the vector $\phi_{1}=\left(x_{1}, 0,0, \cdots\right)$ for which we have

$$
\begin{aligned}
H \phi_{1} & =\left(k_{1} f_{1}\left(x_{1}\right), k_{2} f_{2}(0), k_{3} f_{3}(0), \cdots\right) \\
& =\left(\lambda x_{1}, 0,0, \cdots\right)=\lambda \phi_{1},
\end{aligned}
$$

namely, $\lambda \in S(H)$. Therefore, if the continuous function $g_{1}(x)$ takes two different values λ_{1}, λ_{2} at points different from zero:

$$
k_{1} g_{1}\left(x_{1}\right)=\lambda_{1}, k_{1} g_{1}\left(x_{2}\right)=\lambda_{2} ; \quad x_{1} \neq 0, x_{2} \neq 0,
$$

then, since $k_{1} g_{1}(x)$ takes every value between λ_{1} and $\lambda_{2}, S(H)$ contains at least one interval. Namely, if $S(H)$ contains no intervals, $k_{1} g_{1}(x)$ must be constant, and hence it follows that

$$
k_{1} f_{1}(x)=\lambda_{1} x \quad(-\infty<x<+\infty)
$$

for a uniquely defined number λ_{1}. Similarly, we have

$$
k_{i} f_{i}(x)=\lambda_{i}(x) \quad(-\infty<x<+\infty ; i=2,3, \cdots)
$$

Therefore, for $\phi=\left(x_{1}, x_{2}, \cdots\right)$ and $\psi=\left(y_{1}, y_{2}, \cdots\right)$, we have

$$
\begin{aligned}
H(x \phi+y \psi) & =\left(k_{1} f_{1}\left(x x_{1}+y y_{1}\right), k_{2} f_{2}\left(x x_{2}+y y_{2}\right), \cdots\right) \\
& =\left(\lambda_{1}\left(x x_{1}+y y_{1}\right), \lambda_{2}\left(x x_{2}+y y_{2}\right), \cdots\right) \\
& =x\left(k_{1} f_{1}\left(x_{1}\right), k_{2} f_{2}\left(x_{2}\right), \cdots\right)+y\left(k_{1} f_{1}\left(y_{1}\right), k_{2} f_{2}\left(y_{2}\right), \cdots\right)
\end{aligned}
$$

[^0]
[^0]: 1) As was pointed out in the preceding paper [2], we need only to study the case when $H 0=0$.
