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In this paper we have mainly two aims: one is to express a
normal operator in a Hilbert space by continuous linear functionals
associated with all elements of a complete orthonormal set in that
space and the other is to construct a normal operator with the
arbitrarily prescribed point spectrum. We can yet treat these two
problems at the same time.

Definition. Let $ be the complex abstract Hilbert space which
is complete, separable, and infinite dimensional; let {¢.},.;ss,... and
{¥u}uz1,2,... both be incomplete orthonormal infinite sets which have
no element in common and together form a complete orthonormal
set in 9; let {4,},.1,25... be an arbitrarily preseribed bounded sequence
in the complex plane; let (u,;) be an infinite unitary matrix with

[u,,]51,5=1,2,8,---; let ?If,,=gu,.,wlr,; let N be the operator defined
by

Nx=ji}:12.(x. sov)so,-l-cg(x, V)7,
for every xc9 and an arbitrarily given constant c; let L, be the
continuous linear functional associated with an arbitrary element f

in ; and let the operator N and the element Nz, defined above, be
denoted symbolically by

(1) N=§Z,¢,®L,,+cg?f,.®L,p
and
(2) No=310.0.0L,, @)+ 3 W, DLy, (@)

respectively. Then the sum of the two series in the right-hand side
of (1) is called “the functional-representation of the operator N”.

Theorem 1. The functional-representation of the operator N
defined by (1) converges uniformly and N is a bounded normal
operator with the point spectrum {1,} on . In addition, putting
M=max (S, |¢|") where S=sup|4,[% || N||=VM.

Proof. Since, by hypotheses, a complete orthonormal set is
formed by the two sets {¢,} and {V,}, we have for every zc¢

& =§a,¢, + g]bn‘!'m



