142. Evolutional Equations of Parabolic Type By Hiroki Tanabe
 (Comm. by K. Kunugi, m.J.A., Dec. 12, 1961)

1. Introduction. The object of this note is to state some theorems concerning the existence and the uniqueness of the solution of the initial value problem for the evolutional equation

$$
\begin{equation*}
d x(t) / d t=A(t) x(t)+f(t), a \leqq t \leqq b \tag{1.1}
\end{equation*}
$$

Here the unknown $x(t)$ as well as the inhomogeneous term $f(t)$ is a function on the closed interval $[a, b]$ to a Banach space X, whereas $A(t)$ is a function on $[a, b]$ to the set of (in general unbounded) linear operators acting in X.

For each $t, A(t)$ is assumed to be the infinitesimal generator of an analytic semi-group of bounded operators. We make some additional assumptions on the resolvents of $A(t)$. However, we do not assume that the domain of some fractional power of $A(t)$ is independent of t.

Under these assumptions, we will construct the evolution operator (or fundamental solution) $U(t, s)$, defined for $a \leqq s \leqq t \leqq b$, such that the solution of (1.1) can be expressed in the form

$$
\begin{equation*}
x(t)=U(t, s) x(s)+\int_{s}^{t} U(t, \sigma) f(\sigma) d \sigma . \tag{1.2}
\end{equation*}
$$

2. Notations and assumptions. We denote by \sum the closed angular domain consisting of all the complex numbers λ satisfying $|\arg \lambda| \leqq \pi / 2+\theta$, where θ is a fixed angle with $0<\theta<\pi / 2$. We make the following assumptions.
(A.1) For each $t \in[a, b], A(t)$ is a densely defined, closed linear operator whose resolvent set $\rho(A(t))$ contains \sum.
(A.2) There exists a positive constant M such that the resolvent of $A(t)$ satisfies

$$
\begin{equation*}
\left\|(\lambda I-A(t))^{-1}\right\| \leqq M /|\lambda|, \tag{2.1}
\end{equation*}
$$

for each $t \in[a, b]$ and $\lambda \in \sum$.
(A.3) $A(t)^{-1}$, which is a bounded operator valued function of t, is once Hölder continuously differentiable in $a \leqq t \leqq b$:

$$
\begin{equation*}
\left\|d A(t)^{-1} / d t-d A(s)^{-1} / d s\right\| \leqq K|t-s|^{\alpha}, K, \alpha>0 . \tag{2.2}
\end{equation*}
$$

(A.4) There exist positive constants N and ρ with $0 \leqq \rho<1$, such that

$$
\begin{equation*}
\left\|\frac{\partial}{\partial t}(\lambda I-A(t))^{-1}\right\| \leqq \frac{N}{|\lambda|^{1-\rho}}, \tag{2.3}
\end{equation*}
$$

for each $t \in[a, b]$ and $\lambda \in \sum$.
In what follows, we denote by C constants which depend only on the constants appearing in the above assumptions.

