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1. In the theory of the Fourier exponential transform on the real
number field R the following four properties play important roles.
Namely,

a) the Fourier exponential transform

E-e()-,. o()- e-’ o(t)at

is linear mapping from onto itself where is the space of all
functions of class C whose derivatives are all rapidly decreasing,

b) E(o,,) o.E,

d) N.Eo()=N.(
where and belong to , . is the convultion of and , and
Z is the set of all integers.

Some years ago we have pointed out that the properties b) and
d) characterize the Fourier exponential transform (2]). In this
paper we shall deal with another characterization. We denote (x-ba)
with (z) as a function of z.

Now the main result is as follows:
Theorem. If there exists a linear mapping T from 3 into the

space of C" functions on a Riemannian manifold satisfying the
conditions:

I) when a function series , .,... in 3 converges to 0 by L-topology, the series T, T.,.,... converges to 0 by L*-topology,
II) to any point of and any open set U containing . there

exists a function in 3 such that the support of T is contained
in U and T() is different from 0 and

II) to the same function T() grad T() differs from T()
grad T() with some real number a (here a may depend on o),

III) T(,@) Tq. Tk,

fl Tp de=fl dx,

then there is a C bijection r from to R such that
Te(.)= Ev(e).

Moreover if we assume an additional hypothesis


