7. On Adjunction Spaces

By Mitsuru TSUDA

Department of Mathematics, Tokyo University of Education (Comm. by K. Kunugi, M.J.A., Jan. 12, 1962)

1. The Main Theorem. Let $\{C_{\alpha} \mid \alpha \in \Omega\}$ be a family of topological spaces. Let us consider a family of continuous maps $\{g_{\alpha} \mid \alpha \in \Omega\}$, where g_{α} is a continuous map defined on a closed subspace A_{α} of C_{α} into another topological space Y for each α . Then the disjoint union $W=Y^{\smile}(\alpha \in \Omega^{-1})$ is a space with the topology defined as follows: a subset $V \subset W$ is open if and only if $V \cap Y$ is an open subset of Y and $V \cap C_{\alpha}$ is an open subset of C_{α} for each C_{α} . Now we define in C_{α} and equivalence relation as follows: Two points C_{α} and C_{α} are equivalent if and only if $C_{\alpha}(x)=y$; two points $C_{\alpha}(x)=y$ are equivalent if and only if $C_{\alpha}(x)=y$; each point is equivalent to itself. We take $C_{\alpha}(x)=y$ to be the quotient space of $C_{\alpha}(x)=y$ with respect to this equivalence relation and $C_{\alpha}(x)=y$ the natural projection; that is, a subset $C_{\alpha}(x)=y$ is open if and only if $C_{\alpha}(x)=y$ is an open subset in $C_{\alpha}(x)=y$. We call this space $C_{\alpha}(x)=y$ the natural projection; that is, a subset $C_{\alpha}(x)=y$ is open if and only if $C_{\alpha}(x)=y$ is an open subset in $C_{\alpha}(x)=y$ the natural projection; that is, a subset $C_{\alpha}(x)=y$ is open if and only if $C_{\alpha}(x)=y$.

The adjunction space is one of the most important spaces in the homotopy theory. (Cf. Hu [1].) We shall consider here a settheoretical property of this space. Namely we shall prove the following theorem.

Theorem 1. Let $\{C_{\alpha} \mid \alpha \in \Omega\}$ be a family of topological spaces, and let A_{α} be a closed subspace of C_{α} , g_{α} a closed continuous map defined on A_{α} into another topological space Y, for each $\alpha \in \Omega$. Then each of the following properties for Y and all C_{α} 's, implies the same property for the adjunction space Z, obtained by adjoining $\{C_{\alpha}\}$ to Y by means of the continuous maps $\{g_{\alpha}: A_{\alpha} \rightarrow Y\}$:

- (1) normality,
- (2) complete normality,
- (3) perfect normality,
- (4) collectionwise normality,
- (5) m-paracompactness and normality,

where m is any infinite cardinal number.

Here a topological space is called \mathfrak{m} -paracompact if any open covering of power $\leq \mathfrak{m}$ admits a locally finite open refinement. This notion is due to K. Morita [3].

In his lecture on the obstruction theory of CW-complexes [4], G. W. Whitehead has introduced the notion of relative CW-complexes. (For the definition, see §3 below.) As an application of Theorem 1, we shall establish the following theorem.