set determining \Re ; and moreover it is seen that the same result is true of $\{\Psi_{\mu}^*\}$.

Remark 2. It is found immediately from the method of the proof of Theorem A that, if the (one-dimensional or two-dimensional) measure of $\Delta(N)$ is zero, the second member in the right-hand side of (1) vanishes and $\{\varphi_{\nu}\}$ is a complete orthonormal set, and that, if, on the contrary, the point spectrum of N is empty, N is expressed by that second member in which the orthonormal set $\{\Psi_{\mu}\}$ is complete.

Corollary A. If, in Theorem A, f(z) is a function holomorphic on the closed domain $D\{z: |z| \leq ||N||\}$, then $||f(N)\psi_{\mu}||^2, \mu=1, 2, 3, \cdots$, assume the same value, which will be denoted by σ' ; and if, in addition, we choose arbitrarily a complex constant c' with absolute value $\sqrt{\sigma'}$ and put $\Psi'_{\mu} = \sum_{j} u'_{\mu j} \psi_{j}$ where $u'_{\mu j} = (f(N)\psi_{\mu}, \psi_{j})/c'$ and \sum_{j} denotes the sum for all $\psi_{j} \in \{\psi_{\mu}\}$, then the equality $f(N) = \sum_{\mu} f(\lambda_{\nu}) \varphi_{\nu} \otimes L_{\varphi_{\nu}} + c' \sum_{\mu} \Psi'_{\mu} \otimes L_{\varphi_{\mu}}$

holds on \mathfrak{H} and the matrix (u'_{kj}) associated with all the elements of $\{\Psi_{\mu}\}$ possesses the same characters as those of the matrix (u_{kj}) described in Theorem A.

Proof. Since, by definition, we have $f(N) = \int_{D} f(z) dK(z)$, which implies that the adjoint operator $f^*(N)$ of f(N) is given by $f^*(N)$ $= \int_{D} \overline{f(z)} dK(z)$, and since, by hypotheses, f(z) is holomorphic on D, there is no difficulty in showing that

1° f(N) is a bounded normal operator in \mathfrak{H} ;

 2° the point spectrum of N is given by $\{f(\lambda_{\nu})\}_{\nu=1,2,3,...}$, and φ_{ν} is an eigenelement of f(N) corresponding to the eigenvalue $f(\lambda_{\nu})$;

 3° the continuous spectrum of f(N) also is given by the image of $\Delta(N)$ by f(z).

Accordingly the present corollary is a direct consequence of Theorem A.

Correction to Sakuji Inoue: "Functional-Representations of Normal Operators in Hilbert Spaces and Their Applications" (Proc. Japan Acad., Vol. 37, No. 10, 614-618 (1961)).

Page 614, line 17 from bottom: read " $\sum_{\nu=1}^{\infty}$ " in place of " $\sum_{j=1}^{\infty}$ ". Page 615, line 1: read " b_{μ} " in place of " b_{μ} ". Page 616, line 1: read " $\overline{L_{\varphi_{\nu}}(y)}$ and $\overline{L_{\varphi_{\kappa}}(y)}$ " in place of " $\overline{L_{\varphi_{\nu}}(y)}$ and $\overline{L_{\varphi_{\nu}}(y)}$ ". Page 617, line 18: read "relations" in place of "velations".