set determining \mathfrak{R}; and moreover it is seen that the same result is true of $\left\{\Psi_{\mu}^{*}\right\}$.

Remark 2. It is found immediately from the method of the proof of Theorem A that, if the (one-dimensional or two-dimensional) measure of $\Delta(N)$ is zero, the second member in the right-hand side of (1) vanishes and $\left\{\varphi_{\nu}\right\}$ is a complete orthonormal set, and that, if, on the contrary, the point spectrum of N is empty, N is expressd by that second member in which the orthonormal set $\left\{\psi_{\mu}\right\}$ is complete.

Corollary A. If, in Theorem A, $f(z)$ is a function holomorphic on the closed domain $D\{z:|z| \leqq\|N\|\}$, then $\left\|f(N) \psi_{\mu}\right\|^{2}, \mu=1,2,3, \cdots$, assume the same value, which will be denoted by σ^{\prime}; and if, in addition, we choose arbitrarily a complex constant c^{\prime} with absolute value $\sqrt{\sigma^{\prime}}$ and put $\Psi_{\mu}^{\prime}=\sum_{j} u_{\mu j}^{\prime} \psi_{j}$ where $u_{\mu j}^{\prime}=\left(f(N) \psi_{\mu}, \psi_{j}\right) / c^{\prime}$ and \sum_{j} denotes the sum for all $\psi_{j} \in\left\{\psi_{\mu}\right\}$, then the equality

$$
f(N)=\sum_{\nu} f\left(\lambda_{\nu}\right) \varphi_{\nu} \otimes L_{\varphi_{\nu}}+c^{\prime} \sum_{\mu} \Psi_{\mu}^{\prime} \otimes L_{\psi_{\mu}}
$$

holds on \mathfrak{g} and the matrix ($u_{k j}^{\prime}$) associated with all the elements of $\left\{\psi_{\mu}\right\}$ possesses the same characters as those of the matrix $\left(u_{k, j}\right)$ described in Theorem A.

Proof. Since, by definition, we have $f(N)=\int_{D} f(z) d K(z)$, which implies that the adjoint operator $f^{*}(N)$ of $f(N)$ is given by $f^{*}(N)$ $=\int_{D} \overline{f(z)} d K(z)$, and since, by hypotheses, $f(z)$ is holomorphic on D, there is no difficulty in showing that
$1^{\circ} f(N)$ is a bounded normal operator in \mathfrak{S};
2° the point spectrum of N is given by $\left\{f\left(\lambda_{\nu}\right)\right\}_{\nu=1,2,3}, \ldots$, and φ_{ν} is an eigenelement of $f(N)$ corresponding to the eigenvalue $f\left(\lambda_{\nu}\right)$;
3° the continuous spectrum of $f(N)$ also is given by the image of $\Delta(N)$ by $f(z)$.

Accordingly the present corollary is a direct consequence of Theorem A.

Correction to Sakuji Inoue: "Functional-Representations of Normal Operators in Hilbert Spaces and Their Applications" (Proc. Japan Acad., Vol. 37, No. 10, 614-618 (1961)).

Page 614, line 17 from bottom: read " $\sum_{\nu=1}^{\infty}$ " in place of " $\sum_{j=1}^{\infty}$ ".
Page 615, line 1: read " b_{μ} " in place of " $b \mu$ ".
Page 616, line 1: read " $\overline{L_{\varphi_{\nu}}(y)}$ and $\overline{L_{\psi_{k}}(y)}$ " in place of " $\overline{L \psi_{k}(y)}$ and $\overline{L \varphi_{\nu}(y)}$ ".
Page 617, line 18: read "relations" in place of "velations".

