6. On the Functional-Representations of Normal Operators in Hilbert Spaces

By Sakuji Inoue
Faculty of Education, Kumamoto University
(Comm. by K. Kunugı, m.J.a., Jan. 12, 1962)

Let \mathfrak{y} be the complex abstract Hilbert space which is complete, separable, and infinite dimensional; let $\left\{\varphi_{\nu}\right\}_{\nu=1,2,3}, \ldots$ and $\left\{\psi_{\mu}\right\}_{\mu=1,2,3, \ldots}$ both be incomplete orthonormal sets in $\mathfrak{5}$ which have no element in common and together form a complete orthonormal set in that space; let $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3, \ldots}$ be an arbitrarily prescribed bounded sequence in the complex plane; let $\left\{u_{i j}\right\}$ be an infinite unitary matrix with $\left|u_{j j}\right| \neq 1$, $j=1,2,3, \cdots$; let $\Psi_{\mu}=\sum_{j=1}^{\infty} u_{\mu_{j}} \psi_{j}$; let L_{x} be the continuous linear functional associated with an arbitrary $x \in \mathfrak{F}$; and let $y \otimes L_{x}$ be the operator defined by $\left(y \otimes L_{x}\right) z=(z, x) y$ for an arbitrarily given $y \in \mathfrak{F}$ and for every $z \in \mathfrak{J}$. Then, with respect to the operator N defined as

$$
N=\sum_{\nu=1}^{\infty} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}+c \sum_{\mu=1}^{\infty} \Psi_{\mu} \otimes L_{\varphi_{\mu}},
$$

where c is an arbitrarily given complex constant, I have proved in Vol. 37, No. 10 (1961) of Proceedings of the Japan Academy that not only the right-hand side converges uniformly, but that also N is a bounded normal operator with point spectrum $\left\{\lambda_{\nu}\right\}$ in \mathfrak{S}, and have defined the expression of the right-hand side as "the functionalrepresentation of $N^{\prime \prime}$.

The purpose of this paper is to prove that conversely every bounded normal operator N in \mathfrak{h} is essentially expressible by such an infinite series of the continuous linear functionals associated with all the elements of a complete orthonormal set in \mathfrak{F} as described above.

Theorem A. Let N be a bounded normal operator in \mathfrak{s}; let $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3}, \ldots$ be its point spectrum (inclusive of the multiplicity of each eigenvalue of N); let $\left\{\varphi_{\nu}\right\}_{\nu=1,2,3}, \ldots$ be an orthonormal set determining the subspace M determined by all the eigenelements of N, such that φ_{ν} is a normalized eigenelement corresponding to an arbitrary eigenvalue λ_{ν} of N; let $\left\{\psi_{\mu}\right\}_{\mu=1,2,3}, \ldots$ be an orthonormal set determining the orthogonal complement \mathfrak{M} of \mathfrak{M}; and let L_{f} be the continuous linear functional associated with any $f \in \mathscr{J}$. Then $\left\|N \psi_{\mu}\right\|^{2}$, $\mu=1,2,3, \cdots$, assume the same value, which will be denoted by σ; and if we choose arbitrarily a complex constant c with absolute value $\sqrt{\sigma}$ and put $\Psi_{\mu}=\sum_{j} u_{\mu_{j}} \psi_{j}$, where $u_{\mu_{j}}=\left(N \psi_{\mu}, \psi_{j}\right) / c$ and \sum_{j}

