6. On the Functional-Representations of Normal Operators in Hilbert Spaces

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by K. KUNUG1, M.J.A., Jan. 12, 1962)

Let \mathfrak{H} be the complex abstract Hilbert space which is complete, separable, and infinite dimensional; let $\{\varphi_{\nu}\}_{\nu=1,2,3,\dots}$ and $\{\Psi_{\mu}\}_{\mu=1,2,3,\dots}$ both be incomplete orthonormal sets in \mathfrak{H} which have no element in common and together form a complete orthonormal set in that space; let $\{\lambda_{\nu}\}_{\nu=1,2,3,\dots}$ be an arbitrarily prescribed bounded sequence in the complex plane; let $\{u_{ij}\}$ be an infinite unitary matrix with $|u_{jj}| \neq 1$, $j=1,2,3,\dots$; let $\Psi_{\mu} = \sum_{j=1}^{\infty} u_{\mu j} \Psi_{j}$; let L_x be the continuous linear functional associated with an arbitrary $x \in \mathfrak{H}$; and let $y \otimes L_x$ be the operator defined by $(y \otimes L_x) z = (z, x) y$ for an arbitrarily given $y \in \mathfrak{H}$ and for every $z \in \mathfrak{H}$. Then, with respect to the operator N defined as

$$N = \sum_{\nu=1}^{\infty} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}} + c \sum_{\mu=1}^{\infty} \Psi_{\mu} \otimes L_{\varphi_{\mu}},$$

where c is an arbitrarily given complex constant, I have proved in Vol. 37, No. 10 (1961) of Proceedings of the Japan Academy that not only the right-hand side converges uniformly, but that also N is a bounded normal operator with point spectrum $\{\lambda_n\}$ in \mathfrak{H} , and have defined the expression of the right-hand side as "the functional-representation of N".

The purpose of this paper is to prove that conversely every bounded normal operator N in \mathfrak{H} is essentially expressible by such an infinite series of the continuous linear functionals associated with all the elements of a complete orthonormal set in \mathfrak{H} as described above.

Theorem A. Let N be a bounded normal operator in \mathfrak{H} ; let $\{\lambda_{\nu}\}_{\nu=1,2,3,\ldots}$ be its point spectrum (inclusive of the multiplicity of each eigenvalue of N); let $\{\varphi_{\nu}\}_{\nu=1,2,3,\ldots}$ be an orthonormal set determining the subspace \mathfrak{M} determined by all the eigenelements of N, such that φ_{ν} is a normalized eigenelement corresponding to an arbitrary eigenvalue λ_{ν} of N; let $\{\Psi_{\mu}\}_{\mu=1,2,3,\ldots}$ be an orthonormal set determining the orthogonal complement \mathfrak{N} of \mathfrak{M} ; and let L_{f} be the continuous linear functional associated with any $f \in \mathfrak{H}$. Then $||N\Psi_{\mu}||^{2}$, $\mu=1,2,3,\cdots$, assume the same value, which will be denoted by σ ; and if we choose arbitrarily a complex constant c with absolute value $\sqrt{\sigma}$ and put $\Psi_{\mu} = \sum_{j} u_{\mu j} \Psi_{j}$, where $u_{\mu j} = (N\Psi_{\mu}, \Psi_{j})/c$ and $\sum_{j} P_{\mu}$