2. Some Characterizations of Fourier Transforms. III

By Koziro Iwasaki

Musashi Institute of Technology, Tokyo (Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1962)

1. In this paper we shall denote with \mathfrak{P} the space of all functions on the real number field of class C^{∞} whose derivatives decrease rapidly and with \mathfrak{D} the subspace of \mathfrak{P} consisting of all functions in \mathfrak{P} with compact support. For the topology \mathfrak{P} and \mathfrak{D} see the Schwartz's book ([4]). And we denote $\varphi(x+h)$ with $\varphi_h(x)$ as a function of x. The purpose of this paper is to prove the following

Theorem. Let T be a continuous linear mapping from \mathfrak{P} to itself which satisfies the following conditions:

I)
$$T^2\varphi(x) = \varphi(-x),$$

II) $T(\varphi * \psi) = T\varphi \cdot T\psi.$

Then $T\varphi(x)$ must be equal to $E\varphi(x)$ or $E\varphi(-x)$, where $E\varphi(x)$ is the Fourier transform $\int_{0}^{\infty} e^{2\pi i x t} \varphi(t) dt$ of $\varphi(x)$.

2. First we shall prove a few lemmas.

Lemma 1. Let φ , ψ be elements of \mathfrak{D} and the support of φ be contained in [a, b]. If we put

$$f_n(x) = \frac{b-a}{n} \sum_{j=1}^n \varphi(x-h_j) \psi(h_j)$$

for every natural number n, where $h_j = a + \frac{(b-a)j}{n}$, then the series

 $f_1(x), f_2(x), \cdots$ converges to $\varphi * \psi$ in \mathfrak{D} and, a fortiori, in \mathfrak{P} .

We omit the proof of this lemma because it is very easy.

Lemma 2. There is a continuous function r(x) on the real number field such that

$$T\varphi_h(x) = \exp\left(2\pi i h r(x)\right) T\varphi(x)$$

for every function φ in \mathfrak{P} and every couple of real numbers h and x.

Proof. For any given x there exists an element ψ of \mathfrak{P} such that $T\psi(x) \neq 0$ by Condition I. Let us denote $\frac{T\psi_h(x)}{T\psi(x)}$ with u(h, x) or u(h). Because

$$(\varphi * \psi)_h = \varphi_h * \psi = \varphi * \psi_h$$

we get

$$T\varphi_h(x)T\psi(x) = T\varphi(x)T\psi_h(x)$$

by Condition II. Therefore

$$T\varphi_h(x) = T\varphi(x)u(h)$$

for every φ in \mathfrak{P} . From this we can claim $u(h) \neq 0$, because there exists an element φ of \mathfrak{P} such that $T\varphi_h(x) \neq 0$. Also we see that if