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(Comm. by Z. SUETUNA, M.J..., Jan. 12, 1962)

1. In this paper we shall denote with the space of all functions
on the real number field of class C whose derivatives decrease
rapidly and with the subspace of consisting of all functions in
with compact support. For the topology and see the Schwartz’s
book (4). And we denote 9(x+h) with 9(x) as a function of x.
The purpose of this paper is to prove the following

Theorem. Let T be a continuous linear mapping from to itself
which satisfies the following conditions:

I) T29() =9(--x),
II) T(9.)= T.. T.

Then Tg(x) must be equal to Eg(x) or Eg(--x), where Eg(x) is the

Fourier transform .le2ix*9(t)dt of 9(x).

2. First we shall prove a few lemmas.
Lemma 1. Let 9, be elements of and the support of be

contained in a, b_. If we put

f(x)-- b--a (x--h)4(h)

for every natural number n, where h--a (b--a)j, then the series

f(x),f2(x),.., converges to . in . and, a fortiori, in .
We omit the proof of this lemma because it is very easy.
Lemma 2. There is a continuous function r(x) on the real

number field such that
T(x) exp (2zihr(x)) T(x)

for every function in and every couple of real numbers h and x.
Proof. For any given x there exists an element of such

that T(x)O by Condition I. Let us denote T(x) with u(h, x)
or u(h). Because

T(x)

(,)=,=,%
we get

T(x)T(x)-- T(x)T4(x)
by Condition II. Therefore

T(?(x) T(x)u(h)
for every in . From this we can claim u(h)=O, because there
exists an element of such that T(x)-0. Also we see that if


