1. On the Measure-Bend of Parametric Curves

By Kanesiroo ISEKI

Department of Mathematics, Ochanomizu University, Tokyo (Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1962)

1. Curves straightenable on a set. In the present continuation of our recent note [5] we shall derive some further measure-theoretic properties of parametric curves. Throughout the note the space \mathbb{R}^m will be assumed at least 2-dimensional, while all the curves considered will be defined over \mathbb{R} (unless stated to the contrary) and situated in \mathbb{R}^m . A curve $\varphi(t)$ will be termed straightenable (or of bounded bend) on a set E of real numbers iff the bend $\Omega(\varphi; E)$ is finite, and locally straightenable (or of locally bounded bend) iff φ is straightenable on all linear closed intervals. Let us begin our argument with a lemma which extends [1]§ 64.

LEMMA. If a curve φ is straightenable on a set E as well as bounded on E, it is rectifiable on the same set. In consequence, a locally straightenable curve is locally rectifiable whenever it is locally bounded.

REMARK. Simple examples show that the boundedness of φ on E is essential for the validity of the assertion (cf. the remark of [1]§64).

PROOF. By change of parameter if necessary, we may suppose without loss of generality that E is a bounded set. Let I_0 denote generically an open interval. We shall show in the first place that if $\Omega(\varphi; I_0 E) \leq \pi/3$, the curve φ is rectifiable on $I_0 E$ and we have $L(\varphi; I_0 E) \leq 2d(\varphi[I_0 E])$, where for any set X in \mathbb{R}^m we denote by d(X)the diameter of X. For this purpose we may suppose $L(I_0 E)$ positive. It suffices to derive $L(IE) \leq 2|\varphi(I)|$ for each closed interval I contained in I_0 and whose endpoints belong to E. For it is obvious, by definition of length, that $L(I_0 E)$ is the supremum of L(IE). We now distinguish two cases according as the increment $\varphi(I)$ vanishes or not. If $\varphi(I)=0$, then φ must be constant on the set IE and hence $L(IE)=0=2|\varphi(I)|$; indeed we should otherwise get the evident contradiction $\Omega(I_0 E) \geq \Omega(IE) \geq \pi$. If on the other hand $\varphi(I) \neq 0$, then $L(IE) \leq 2|\varphi(I)|$ follows easily by an argument similar to that of [1]§ 63. We leave the details to the reader.

Writing $\theta = \Omega(I_0E)$ for an arbitrary $I_0 = (a, b)$, we shall further show that there exists in I_0 a point *c* such that $\Omega((a, c) \cdot E) \leq \theta/2$ and $\Omega((c, b) \cdot E) \leq \theta/2$. Of course we need only consider the case $\theta > 0$. It is clear that (i) the supremum of the bend $\Omega(JE)$, where *J* ranges