1. On the Measure-Bend of Parametric Curves

By Kanesiroo Iseki
Department of Mathematics, Ochanomizu University, Tokyo
(Comm. by Z. Suetuna, m.J.A., Jan. 12, 1962)

1. Curves straightenable on a set. In the present continuation of our recent note [5] we shall derive some further measure-theoretic properties of parametric curves. Throughout the note the space \boldsymbol{R}^{m} will be assumed at least 2 -dimensional, while all the curves considered will be defined over \boldsymbol{R} (unless stated to the contrary) and situated in \boldsymbol{R}^{m}. A curve $\varphi(t)$ will be termed straightenable (or of bounded bend) on a set E of real numbers iff the bend $\Omega(\varphi ; E)$ is finite, and locally straightenable (or of locally bounded bend) iff φ is straightenable on all linear closed intervals. Let us begin our argument with a lemma which extends [1]§64.

Lemma. If a curve φ is straightenable on a set E as well as bounded on E, it is rectifiable on the same set. In consequence, a locally straightenable curve is locally rectifiable whenever it is locally bounded.

Remark. Simple examples show that the boundedness of φ on E is essential for the validity of the assertion (cf. the remark of [1]§64).

Proof. By change of parameter if necessary, we may suppose without loss of generality that E is a bounded set. Let I_{0} denote generically an open interval. We shall show in the first place that if $\Omega\left(\varphi ; I_{0} E\right)<\pi / 3$, the curve φ is rectifiable on $I_{0} E$ and we have $L\left(\varphi ; I_{0} E\right) \leqq 2 \mathrm{~d}\left(\varphi\left[I_{0} E\right]\right)$, where for any set X in \boldsymbol{R}^{m} we denote by d (X) the diameter of X. For this purpose we may suppose $L\left(I_{0} E\right)$ positive. It suffices to derive $L(I E) \leqq 2|\varphi(I)|$ for each closed interval I contained in I_{0} and whose endpoints belong to E. For it is obvious, by definition of length, that $L\left(I_{0} E\right)$ is the supremum of $L(I E)$. We now distinguish two cases according as the increment $\varphi(I)$ vanishes or not. If $\varphi(I)=0$, then φ must be constant on the set $I E$ and hence $L(I E)=0=2|\varphi(I)|$; indeed we should otherwise get the evident contradiction $\Omega\left(I_{0} E\right) \geqq \Omega(I E) \geqq \pi$. If on the other hand $\varphi(I) \neq 0$, then $L(I E) \leqq 2|\varphi(I)|$ follows easily by an argument similar to that of [1]§63. We leave the details to the reader.

Writing $\theta=\Omega\left(I_{0} E\right)$ for an arbitrary $I_{0}=(a, b)$, we shall further show that there exists in I_{0} a point c such that $\Omega((a, c) \cdot E) \leqq \theta / 2$ and $\Omega((c, b) \cdot E) \leqq \theta / 2$. Of course we need only consider the case $\theta>0$. It is clear that (i) the supremum of the bend $\Omega(J E)$, where J ranges

