24. Further Properties of Reduced Measure-Bend

By Kanesiroo Iseki
Department of Mathematics, Ochanomizu University, Tokyo
(Comm. by Z. Suetuna, M.J.A.., March 12, 1962)

1. Completion of a previous result. We shall be concerned with curves defined on the real line \boldsymbol{R} and situated in \boldsymbol{R}^{m}, where we assume $m \geqq 2$ unless stated otherwise. By sets, by themselves, we shall understand subsets of \boldsymbol{R}. Continuing our recent note [6], let us begin with a theorem which completes part (ii) of the theorem of [5] $\S 3$.

Theorem. Given a curve φ and a set E, suppose that $\Omega_{*}(\varphi ; M)$ vanishes for every countable set $M \subset E$. Then

$$
r(\varphi ; E)=\Omega_{*}(\varphi ; E) \leqq \Omega_{*}(\psi ; E)
$$

for each curve ψ which coincides on E with φ.
Proof. The lemma and the theorem of [6]§2 require respectively that $\Upsilon(\psi ; E) \leqq \Omega_{*}(\psi ; E)$ and $\Upsilon(\varphi ; E)=\Omega_{*}(\varphi ; E)$. But our hypothesis on the curve ψ clearly implies $\Upsilon(\varphi ; E)=\Upsilon(\psi ; E)$. Hence the result.

Remark. The above theorem has a counterpart in length theory, as follows. (The proof is not difficult and may be left to the reader.)

Given a curve φ and a set E, suppose that $L_{*}(\varphi ; M)=0$ holds for every countable set $M \subset E$. Then $\Xi(\varphi ; E)=L_{*}(\varphi ; E) \leqq L_{*}(\psi ; E)$ for each curve ψ which coincides on E with φ.

Here the space in which the two curves lie may exceptionally be of any dimension.
2. Another definition of reduced measure-bend. By the essential measure-bend of a curve φ over a set E, we shall mean the infimum of the measure-bend $\Omega_{*}(\psi ; E)$, where ψ is any curve which coincides on E with φ. The notation $\Omega_{0}(\varphi ; E)$ will be used for it. In terms of this quantity we shall now give a second definition to the notion of reduced measure-bend. Indeed the theorem of [4] $\S 2$ has the following analogue.

Theorem. Given a curve φ and a set E, represent E in any manner as the join of a sequence Δ of subsets and write $\gamma_{0}(\varphi ; E)$ for the infimum of the sum $\Omega_{0}(\varphi ; \Delta)$. Then $\Upsilon_{0}(\varphi ; E)=\Upsilon(\varphi ; E)$.

Proof. On account of the lemma of [6]§2 we have in the first place $\Upsilon(\varphi ; E)=\Upsilon(\psi ; E) \leqq \Omega_{*}(\psi ; E)$ for every curve ψ considered above. It ensues that $\gamma(\varphi ; E) \leqq \Omega_{0}(\varphi ; E)$, where we observe that E may be replaced by any other set. Therefore $r(\varphi ; E) \leqq r(\varphi ; \Delta) \leqq \Omega_{0}(\varphi ; \Delta)$ for every Δ, and from this we infer that $\Upsilon(\varphi ; E) \leqq \Upsilon_{0}(\varphi ; E)$. The deduc-

