32. Further Results in Lebesgue Geometry of Curves

By Kanesiroo Iseki
Department of Mathematics, Ochanomizu University, Tokyo
(Comm. by Z. Suetuna, m.J.A., April 12, 1962)

1. Proof of a theorem. As heretofore we shall be concerned with curves situated in a Euclidean space \boldsymbol{R}^{m} of dimension $m \geqq 2$. Sets, by themselves, will always mean sets of real numbers unless specified to the contrary. To prove the theorem stated at the end of [4], we shall begin with a lemma in which the points of \boldsymbol{R}^{m} will be called vectors for convenience.

Lemma. (i) We have $(x \diamond y)|x|<4|x-y|$ for every distinct pair of nonvanishing vectors x and y. (ii) Given a positive number $\varepsilon \leqq 1 / 2$ and four vectors $p, q, p^{\prime}, q^{\prime}$ such that $p \neq 0, q \neq 0$, and $p \diamond q \neq 0$, write for short $\theta=(p \diamond q) / 4$ and suppose that

$$
\left|p^{\prime}-p\right| \leqq \varepsilon \theta|p|, \quad\left|q^{\prime}-q\right| \leqq \varepsilon \theta|q| .
$$

Then the two vectors $p-q$ and $p^{\prime}-q^{\prime}$ are nonvanishing and the angle between them is less than 8ε.

Proof. re (i): The identity $|x-y|^{2}=|x|^{2}+|y|^{2}-2|x| \cdot|y| \cos \alpha$, where $\alpha=x \diamond y$, implies that if $\alpha>\pi / 2$, then $4|x-y|>4|x|>\alpha|x|$. On the other hand we always have $|x-y| \geqq|x| \sin \alpha$ on account of the identity $|x-y|^{2}-(|x| \sin \alpha)^{2}=(|x| \cos \alpha-|y|)^{2}$. When $\alpha \leqq \pi / 2$, we therefore find, in view of the well-known inequality $\pi \sin \alpha \geqq 2 \alpha$, that $\alpha|x| \leqq 2|x| \sin \alpha \leqq 2|x-y|$. This establishes (i).
$r e$ (ii): Write $w=p-q$ and $w^{\prime}=p^{\prime}-q^{\prime}$, so that $w \neq 0$ since $p \diamond q \neq 0$. Part (i) proved already implies $\theta|p|<|w|$ and $\theta|q|<|w|$. Hence

$$
\left|p^{\prime}-p\right|+\left|q^{\prime}-q\right| \leqq \varepsilon \theta|p|+\varepsilon \theta|q|<2 \varepsilon|w|
$$

This, united with the evident relation $|w| \leqq\left|w^{\prime}\right|+\left|p^{\prime}-p\right|+\left|q^{\prime}-q\right|$, gives $\left|w^{\prime}\right|>(1-2 \varepsilon)|w| \geqq 0$, so that w^{\prime} cannot vanish. Putting now for brevity $\lambda=\left(w \diamond w^{\prime}\right) / 4$ and using (i) again, we find further

$$
\lambda|w| \leqq\left|w-w^{\prime}\right| \leqq\left|p^{\prime}-p\right|+\left|q^{\prime}-q\right|<2 \varepsilon|w|
$$

Since $w \neq 0$, it follows that $\lambda<2 \varepsilon$, Q. E. D.
Theorem. A light curve φ is spherically representable on both sides provided that it is locally straightenable.

Proof. We can associate with each point $a \in \boldsymbol{R}$ a positive number δ (depending on a) such that $\varphi(t) \neq \varphi(a)$ whenever $a<t \leqq a+\delta$. For otherwise there would exist a strictly decreasing sequence of points $t_{1}>t_{2}>\cdots$ tending to a and such that $\varphi\left(t_{n}\right)=\varphi(a)$ for each $n=1,2, \cdots$. Consider now the interval $K_{n}=\left[t_{n+1}, t_{n}\right]$ for each n. Then the curve φ, which is light by hypothesis, could not be constant on K_{n}, so that $\Omega\left(\varphi ; K_{n}\right) \geqq \pi$ on account of [1]§60. In view of superadditivity of

