32. Further Results in Lebesgue Geometry of Curves

By Kanesiroo ISEKI

Department of Mathematics, Ochanomizu University, Tokyo (Comm. by Z. SUETUNA, M.J.A., April 12, 1962)

1. Proof of a theorem. As heretofore we shall be concerned with curves situated in a Euclidean space \mathbb{R}^m of dimension $m \ge 2$. Sets, by themselves, will always mean sets of real numbers unless specified to the contrary. To prove the theorem stated at the end of [4], we shall begin with a lemma in which the points of \mathbb{R}^m will be called vectors for convenience.

LEMMA. (i) We have $(x \diamond y) |x| < 4 |x-y|$ for every distinct pair of nonvanishing vectors x and y. (ii) Given a positive number $\varepsilon \leq 1/2$ and four vectors p, q, p', q' such that $p \neq 0$, $q \neq 0$, and $p \diamond q \neq 0$, write for short $\theta = (p \diamond q)/4$ and suppose that

 $|p'-p| \leq \varepsilon \theta |p|, |q'-q| \leq \varepsilon \theta |q|.$

Then the two vectors p-q and p'-q' are nonvanishing and the angle between them is less than 8ε .

PROOF. re (i): The identity $|x-y|^2 = |x|^2 + |y|^2 - 2|x| \cdot |y| \cos \alpha$, where $\alpha = x \diamond y$, implies that if $\alpha > \pi/2$, then $4|x-y| > 4|x| > \alpha |x|$. On the other hand we always have $|x-y| \ge |x| \sin \alpha$ on account of the identity $|x-y|^2 - (|x| \sin \alpha)^2 = (|x| \cos \alpha - |y|)^2$. When $\alpha \le \pi/2$, we therefore find, in view of the well-known inequality $\pi \sin \alpha \ge 2\alpha$, that $\alpha |x| \le 2|x| \sin \alpha \le 2|x-y|$. This establishes (i).

re (ii): Write w = p-q and w' = p'-q', so that $w \neq 0$ since $p \diamond q \neq 0$. Part (i) proved already implies $\theta |p| < |w|$ and $\theta |q| < |w|$. Hence $|p'-p| + |q'-q| \leq \varepsilon \theta |p| + \varepsilon \theta |q| < 2\varepsilon |w|$.

This, united with the evident relation $|w| \leq |w'| + |p'-p| + |q'-q|$, gives $|w'| > (1-2\varepsilon)|w| \geq 0$, so that w' cannot vanish. Putting now for brevity $\lambda = (w \diamond w')/4$ and using (i) again, we find further

 $\lambda |w| \leq |w-w'| \leq |p'-p|+|q'-q| < 2\varepsilon |w|.$ Since $w \neq 0$, it follows that $\lambda < 2\varepsilon$, Q. E. D.

THEOREM. A light curve φ is spherically representable on both sides provided that it is locally straightenable.

PROOF. We can associate with each point $a \in \mathbf{R}$ a positive number δ (depending on a) such that $\varphi(t) \neq \varphi(a)$ whenever $a < t \leq a + \delta$. For otherwise there would exist a strictly decreasing sequence of points $t_1 > t_2 > \cdots$ tending to a and such that $\varphi(t_n) = \varphi(a)$ for each $n = 1, 2, \cdots$. Consider now the interval $K_n = [t_{n+1}, t_n]$ for each n. Then the curve φ , which is light by hypothesis, could not be constant on K_n , so that $\Omega(\varphi; K_n) \geq \pi$ on account of [1]§60. In view of superadditivity of