318 [Vol. 38,

73. On the Product of Some Quasi-Hausdorff and Logarithmic Methods of Summability

By Kazuo Ishiguro

Department of Mathematics, Hokkaido University, Sapporo (Comm. by K. Kunugi, M.J.A., July 12, 1962)

- 1. O. Szász [11] discussed the following problem concerning the product of two summability methods for sequences: If a sequence $\{s_n\}$ is summable by a regular T_1 method then is the T_2 transform of $\{s_n\}$, where T_2 is a regular sequence-to-sequence method, also summable by the T_1 method to the same sum as before? In what follows we denote $T_1 \cdot T_2$ as the iteration product of these two methods, that is the T_1 transform of the T_2 transform of a sequence. He answered this problem in the affirmative in the cases when
 - (a) Abel and Hausdorff summability,
 - (b) Laplace and Riesz summability,
 - (c) Borel and Hausdorff summability,
 - (d) Abel summability and the circle method,
 - (e) Abel summability and the S_{α} method.

He also gave an example of two regular methods, where T_1 does not imply $T_1 \cdot T_2$. (See [11, 12].) Here we denote "method A implies method B", when any sequence summable A is summable B to the same sum.

- M. S. Ramanujan [9, 10] also answered this problem in the affirmative in the cases when
- (f) Abel and quasi-Hausdorff summability for a bounded sequence.
- (g) Borel and quasi-Hausdorff summability for a bounded sequence.
- (h) Abel summability and the (S^*, μ) method for the sequence which satisfies some condition.
- M. R. Parameswaran [4] answered this problem in the affirmative in the case when
 - (i) Nörlund summability and a method of the Nörlund type.
- C. T. Rajagopal [5] and T. Pati [3] also proved several theorems concerning this problem.
- D. Borwein [1] answered this problem in the affirmative in the case when
 - (j) logarithmic and Hausdorff summability.
 - The purpose of this note is to prove a theorem in the case when
 - (k) logarithmic and quasi-Hausdorff summability with some con-