300 [Vol. 38,

67. On a Ya. B. Rutickii's Theorem Concerning a Property of the Orlicz Norm

By Kôji Honda

Muroran Institute of Technology (Comm. by K. Kunugi, M.J.A., July 12, 1962)

Let \mathbf{R} be a modulared semi-ordered linear space¹⁾ and its modular be $m(x)(x \in \mathbb{R})$, and suppose the semi-regularity²⁾ of \mathbb{R} .

Concerning the property of the Orlicz norm:

$$\lim_{\|u\|_{\mathcal{M}}\to\infty}\frac{1}{\|u\|_{\mathcal{M}}}\int_{C}M[|u(t)|]dt=\infty,$$

where G is a bounded closed set in finite-dimentional Euclidian space and M is a N-function (see [2]), Ya. B. Rutickii [4] gave the following theorem.

Theorem 1. In order that (1) be fulfilled, it is necessary and sufficient that there exists a function f(u) $(0 \le u < \infty)$, satisfying the condition

$$\lim_{u\to\infty}f(u)=\infty$$

and such that for every v and all sufficiently large values of u the inequality

$$(3) M(uv) \ge uf(u)M(v)$$

be fulfilled.

The Orlicz space L_{M}^{*} is a modulared space on which the modular is defined as

$$(4) m(x) = \int_{G} M[|x(t)|] dt (x \in L_{M}^{*}).$$

Then, (1) is written as

$$\lim_{\|x\|\to\infty} m(x)/||x|| = \infty$$

where

$$\lim_{\|x\| \to \infty} m(x) / \|x\| = \infty$$

$$\|x\| = \inf_{\xi > 0} \frac{1 + m(\xi x)}{\xi} (= \|x\|_{M})^{3}$$

The purpose of this paper is to prove the following theorem.

Theorem 2. Let \mathbb{R}^m be a modulared semi-ordered linear space. Then, in order that (5) be fulfilled, it is necessary and sufficient

¹⁾ Namely, R is a conditionally vector lattice, in the sense of G. Birkhoff, on which a functional m(x) is defined, and then such space is denoted by \mathbb{R}^m . (see [3, §35]).

²⁾ **R** is said to be semi-regular, if for any $o \neq x \in \mathbf{R}$ there exists an element $\overline{x} \in \mathbf{R}$ such that $\overline{x}(x) = 0$, where \overline{R} is the totality of all linear functionals \overline{x} satisfying that $x_{\lambda}\downarrow_{\lambda\in\Lambda}0$ implies $\inf_{\lambda\in\Lambda}|\overline{x}(x_{\lambda})|=0$.

³⁾ See Theorem 10.5 in [2].