65. On Bertrand's Problem in an Arithmetic Progression

By Tikao Tatuzawa
Mathematical Institute, Nagoya University, Nagoya
(Comm. by Z. Suetuna, m.J.A., July 12, 1962)

In this note, we shall prove the following
Theorem. There exists a positive constant c such that, if

$$
x \geqq \exp (c \log k \log \log k)
$$

and k is sufficiently large, then

$$
\pi(2 x ; k, l)-\pi(x ; k, l)>0
$$

is true for all l, satisfying $(k, l)=1$.
We shall use the same notations and symbols as in Prachar's book [Primzahlverteilung, Springer, 1957].

If $x \geqq \exp (k)$, the theorem is true by Theorem 8.3 in p .144 or Theorem 3.2 in p. 323 of the book. Hence, we assume that
(1) $\quad \exp (c \log k \log \log k) \leqq x \leqq \exp (k)$.

Consequently,

$$
\begin{equation*}
c \log k \log \log k \leqq \log x, \quad \frac{c}{2} \log \log x \leqq \frac{\log x}{\log k}, \tag{2}
\end{equation*}
$$

if k is sufficiently large.
We know from the results of Page [see IV, §5 and §6] and Linnik [see $X, \S 3]$ that there exists a positive constant c_{0} such that there are no zeros of any L-function $\bmod k$ in the rectangle

$$
1-\frac{c_{0}}{\log k} \leqq \sigma \leqq 1, \quad|t| \leqq k^{4}
$$

except possible one real zero β_{1} of a particular L-function formed with a real character. Further if we put

$$
\delta_{0}= \begin{cases}1-\beta_{1} & \text { if the exceptional zero exists, } \\ \frac{c_{0}}{\log k} & \text { otherwise }\end{cases}
$$

then the rectangle

$$
1-\lambda(k) \leqq \sigma \leqq 1, \quad|t| \leqq k^{4}
$$

contains no zero of any L-function $\bmod k$ except β_{1}, where

$$
\begin{equation*}
\lambda(k)=\frac{c_{0}}{\log k} \log \frac{c_{0} e}{\delta_{0} \log k} . \tag{3}
\end{equation*}
$$

Now the constant c in the theorem will be given such that

$$
\begin{equation*}
c c_{0} \geqq 20 \tag{4}
\end{equation*}
$$

Proof. From p. 321 of Prachar's book, we obtain

$$
\varphi(k)\{\psi(2 x ; k, l)-\psi(x ; k, l)\}
$$

