No. 7]

65. On Bertrand's Problem in an Arithmetic Progression

By Tikao TATUZAWA

Mathematical Institute, Nagoya University, Nagoya (Comm. by Z. Suetuna, M.J.A., July 12, 1962)

In this note, we shall prove the following Theorem. There exists a positive constant c such that, if $x \ge \exp(c \log k \log \log k)$

and k is sufficiently large, then

$$\pi(2x; k, l) - \pi(x; k, l) > 0$$

is true for all l, satisfying (k, l)=1.

We shall use the same notations and symbols as in Prachar's book [Primzahlverteilung, Springer, 1957].

If $x \ge \exp(k)$, the theorem is true by Theorem 8.3 in p. 144 or Theorem 3.2 in p. 323 of the book. Hence, we assume that

(1)
$$\exp(c \log k \log \log k) \leq x \leq \exp(k)$$
.

Consequently,

(2)
$$c \log k \log \log k \le \log x, \quad \frac{c}{2} \log \log x \le \frac{\log x}{\log k},$$

if k is sufficiently large.

We know from the results of Page [see IV, §5 and §6] and Linnik [see X, §3] that there exists a positive constant c_0 such that there are no zeros of any L-function mod k in the rectangle

$$1 - \frac{c_0}{\log k} \leq \sigma \leq 1, \quad |t| \leq k^4$$

except possible one real zero β_1 of a particular *L*-function formed with a real character. Further if we put

$$\delta_0 = egin{cases} 1 - eta_1 & ext{if the exceptional zero exists,} \ rac{c_0}{\log k} & ext{otherwise,} \end{cases}$$

then the rectangle

$$1-\lambda(k) \leq \sigma \leq 1$$
, $|t| \leq k^4$

contains no zero of any L-function mod k except β_1 , where

(3)
$$\lambda(k) = \frac{c_0}{\log k} \log \frac{c_0 e}{\delta_0 \log k}.$$

Now the constant c in the theorem will be given such that (4) $cc_0 \ge 20$.

Proof. From p. 321 of Prachar's book, we obtain $\varphi(k)\{\psi(2x; k, l) - \psi(x; k, l)\}$