112. On an Isomorphism of Galois Cohomology Groups $H^{m}(G, O_{\pi})$ of Integers in an Algebraic Number Field

By Hideo Yokoi

(Comm. by K. SHODA, Oct. 12, 1962)

Introduction. In my paper $[1]^{1}$ we proved the following theorem:

Let K be a normal extension over the rational number field Q, and k be a subfield of K such that K/k is cyclic of prime degree p and that k/Q is normal of degree n. Then, for every dimension m the Galois cohomology group $H^m(G, O_K)$ (G=G(K/k)) of O_K with respect to K/k is isomorphic to the ns/e-ple direct sum of cyclic group of order p:

$$H^m(G, O_K) \cong \{ \overbrace{p, p, \cdots, p}^{ns/e} \}.$$

There we proved this Theorem by showing that the 1-dimensional Galois cohomology group $H^1(G, O_K)$ of O_K with respect to K/k is isomorphic to the 0-dimensional Galois cohomology group $H^0(G, O_K)$ of O_K with respect to K/k:

$$H^1(G, O_{\mathcal{K}}) \cong H^0(G, O_{\mathcal{K}}).$$

In the present paper, we shall give another proof of this Theorem by showing that the 0-dimensional Galois cohomology group $H^{0}(G, O_{K})$ of O_{K} with respect to K/k is isomorphic to the -1-dimensional Galois cohomology group $H^{-1}(G, O_{K})$ of O_{K} with respect to K/k:

$$H^0(G, O_{\mathcal{K}}) \cong H^{-1}(G, O_{\mathcal{K}}).$$

Theorem. Let K be a normal extension over the rational number field \mathbf{Q} , and k be a subfield of K such that K/k is cyclic of prime degree p and that k/\mathbf{Q} is normal of degree n. Denote by G the Galois group of K/k, by O_K and O_k the rings of all integers in K and k respectively. Further, let v be the common ramification number with respect to K/k of all the prime divisors \mathfrak{P}_i of p in K,² and e be the common ramification order with respect to k/\mathbf{Q} of all the prime divisors \mathfrak{p}_i of p in k. Put $s=v-\left[\frac{v}{p}\right]\geq 0$, where [x] means Gaussian symbol.

Then the-1-dimensional Galois cohomology group $H^{-1}(G, O_K)$ of O_K with respect to K/k is isomorphic to the ns/e-ple direct sum of cyclic group of order p:

¹⁾ Cf. H. Yokoi [1], Theorem 3.

²⁾ Here we understand the ramification number v in the same way as we understood in [1]. Cf. H. Yokoi [1], [Remark].