146. Homotopy Groups with Coefficients and a Generalization of Dold-Thom's Isomorphism Theorem. II

By Teiichi KOBAYASHI

Department of Mathematics, Tokyo University of Education (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1962)

This paper is a continuation of the previous paper I. Notations and definitions of the paper I will be used without any comment.

3. Infinite symmetric products. Let X be a Hausdorff space with base point o. The q-fold symmetric product $SP^{q}(X)$ is a space obtained from the topological product $X^{q} = X \times \cdots \times X$ (q-fold) by identifying all points which differ only in the order of the components. The image of $(x_{1}, \dots, x_{q}) \in X^{q}$ by the identification map is denoted by $[x_{1}, \dots, x_{q}] \in SP^{q}(X)$. We define the inclusion map i_{q} : $SP^{q}(X) \rightarrow SP^{q+1}(X)$ by $i_{q}[x_{1}, \dots, x_{q}] = [o, x_{1}, \dots, x_{q}]$. The infinite symmetric product of X with respect to the base point o is the inductive limit of the sequence $X = SP^{1}(X) \xrightarrow{i_{1}} SP^{2}(X) \xrightarrow{i_{2}} \cdots$ and is denoted by SP(X, o). SP(X, o) is a Hausdorff space (cf. [1], p. 254).

A map $f:(X, o) \to (X', o')$ induces a map $f^{z_q}: SP^q(X) \to SP^q(X')$ defined by $f^{z_q}[x_1, \dots, x_q] = [f(x_1), \dots, f(x_q)]$. Clearly, f^{z_q} is compatible with the inclusion i_q . Then a map $f^z: SP(X, o) \to SP(X', o')$ can be defined by $f^z|SP^q(X) = f^{z_q}$. Obviously, if f and g are homotopic, then f^z and g^z are homotopic. Hence the homotopy type of SP(X, o)depends only on that of (X, o). It is easily verified that if A is closed (open) in X and $i: A \to X$ is the inclusion, then the induced maps $i^{z_q}: SP^q(A) \to SP^q(X)$ and $i^z: SP(A, o) \to SP(X, o)$ are homeomorphisms into.

An addition $\mu: SP(X, o) \times SP(X, o) \rightarrow SP(X, o)$ can be defined by $\mu([x_1, \dots, x_q], [y_1, \dots, y_r]) = [x_1, \dots, x_q, y_1, \dots, y_r]$. SP(X, o) is a free abelian semi-group over X with o as the unit element with respect to the addition μ . μ is continuous on any subset of $SP^q(X) \times SP^r(X)$ and on any compact subset of $SP(X, o) \times SP(X, o)$.

Now let X be a CW-complex, $A \ni o$ a connected subcomplex of X, X/A a space obtained from X by contracting A to a point \bar{o} (the base point of X/A), and let $p: (X, o) \rightarrow (X/A, \bar{o})$ be the identification map. Then the following is obtained in [1], §5.

Proposition 2. Under the above assumptions the induced map $p^{z}: SP(X, o) \rightarrow SP(X|A, \bar{o})$ is a quasi-fibering¹ with a fiber $(p^{z})^{-1}(\bar{o})$

¹⁾ A map $p: E \to B$ is said to be a quasi-fibering if p is onto and induces an isomorphism $p_*: \pi_n(E, F, x) \approx \pi_n(B, b)$ for any $b \in B$, $x \in F = p^{-1}(B)$ and $n \ge 0$.