143. Some Characterizations of m-paracompact Spaces. II

By Tadashi ISHII

Utsunomiya College of Technology (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1962)

In this paper we study some characterizations of m-paracompact and normal spaces in the form of the selection theorems.¹⁾ Let X and Y be topological spaces. 2^{Y} will denote the family of non-empty subsets of Y. A function from a subset of X to 2^{Y} is called a *carrier*. If $\varphi: X \rightarrow 2^{Y}$, then a selection for φ is a continuous function $f: X \rightarrow Y$ such that $f(x) \in \varphi(x)$ for every $x \in X$. A carrier $\varphi: X \rightarrow 2^{Y}$ is *lower semi-continuous* if, whenever $V \subset Y$ is open in Y, $\{x \in X | \varphi(x) \cap V \neq \phi\}$ is open in X, where ϕ denotes the null set. For a Banach space or a complete metric space Y, we shall consider the following families of sets.

$$\begin{split} &A(Y) = \{S \in 2^{Y} | S \text{ is closed}\}, \\ &K(Y) = \{S \in 2^{Y} | S \text{ is convex}\}, \\ &F(Y) = \{S \in K(Y) | S \text{ is closed}\}, \\ &C(Y) = \{S \in F(Y) | S \text{ is compact or } S = Y\}. \end{split}$$

The following theorem seems to be interesting for us in the point of view that Michael's results [3, Theorems 3.1'' and 3.2''], which were separately stated and proved for paracompact spaces and countably paracompact spaces, are unified.

Theorem 1. The following properties of a T_1 -space are equivalent.

(a) X is m-paracompact and normal.

(b) If Y is a Banach space which has an open base of power $\leq m$, then every lower semi-continuous carrier $\varphi: X \rightarrow F(Y)$ admits a selection.

To prove this theorem, the following lemmas and Theorem 2 in the previous paper [2] are useful.

Lemma 1. If X is m-paracompact and normal, Y a normed linear space with an open base of power $\leq m, \varphi: X \rightarrow K(Y)$ a lower semi-continuous carrier, and if V is a convex neighborhood of the origin of Y, then there exists a continuous function $f: X \rightarrow Y$ such that $f(x) \in \varphi(x) + V$ for every x in X.

Proof. Since $\{y-V\}_{y \in \mathbf{r}}$ is an open covering of Y and Y has an open base with power $\leq \mathfrak{m}$, there exists a locally finite open refinement $\{W_{\lambda} | \lambda \in \Lambda\}$ of $\{y-V\}_{y \in \mathbf{r}}$ with $|\Lambda| \leq \mathfrak{m}$. Let $U_{\lambda} = \{x \in X | \varphi(x) \cap W_{\lambda}\}$

¹⁾ Cf. E. Michael [3].