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1. In the previous articles [1] and [2] published under the same
title, we considered the convergent or divergent generalized distribu-
tions. In this article we investigate the topologies defined by the
powers of sequences and the derived generalized distributions intro-
duced by these topologies. We also show here corrections to the
errors in the previous articles [17], [2], and [3].

2. Definition 1. We denote g, the topology induced in the space
D by neighbourhoods U,(¢) of ¢:

U (p)={¥|e*P|P|*—e"®|p|*ec Wg(0)} where a(p), a(y) means the
argument of the complex valued function ¢ or +» and a>0.

Then we see the following

Lemma 1. The topology o. defines an uniform Hausdorff struc-
ture of the space D.

Proof. It is easily seen that ¢, satisfies the conditions of Haus-
dorff space, and also the conditions (U;), (Un) of the uniformity [4].

Since for any Wg(0) there exists W4,(0) such that W —W'CW,
the condition (Unr) is satisfied.

Definition 2. We say that {¢,} is a Cauchy sequence in o, if
and only if the following condition is satisfied:

For any Wg(0), there exists an integer N such that ¢, Uy(e,)
for all m, n>N.

Definition 3. Suppose that two Cauchy sequences {¢,} and {y,}
satisfy the following condition: for any Wg,(0), there exists an integer
N such that ¢,e Up(¥,.), Y€ Unl(e,) for all m,n>N. Then we say
that {¢,} is equivalent to {y,}.

Lemma 2. The topology o. is not compatible with linear opera-
tiom.

Proof. We show here that there exist two sequences {¢,} and
{¥;} such that though both ¢, and -, converge to 0, the sequence
¢;+; does not converge to 0.

Example 1. ¢, is defined by ¢xp,. where
o | m/* for  1/m<x<2/n
" {—nl/“ for —2/n<ex<—1/n
and p,. is a mollifier defined by L. Schwartz [5] with a compact



