9. On Summability $[c, k]$ and Summability $[R, k]$ of Laplace Series

By G. S. Pandey
Department of Mathematics, Vikram University, Ujjain, India
(Comm. by Kinjirô Kunugi, m.J.A., Jan. 12, 1963)

1. If $f(\theta, \phi)$ be a function defined for the range $0 \leq \theta \leq \pi$ and $0 \leq \phi \leq 2 \pi$, the Laplace series associated with this function on the sphere S is

$$
\begin{equation*}
f(\theta, \phi) \sim \frac{1}{2 \pi} \sum_{n=0}^{\infty}(n+1 / 2) \iint_{S} f\left(\theta^{\prime}, \phi^{\prime}\right) P_{n}(\cos \gamma) \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}, \tag{1.1}
\end{equation*}
$$

where

$$
\cos \gamma=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\phi-\phi^{\prime}\right),
$$

and $P_{n}(x)$ denotes the n-th Legendre polynomial.
The generalized mean value of $f(\theta, \phi)$ is given by

$$
\begin{equation*}
f(\gamma)=\frac{1}{2 \pi \sin \gamma} \int_{c_{r}} f\left(\theta^{\prime}, \phi^{\prime}\right) d S^{\prime} \tag{1.2}
\end{equation*}
$$

where the integral is taken along the small circle whose centre is (θ, ϕ) on the sphere and whose curvilinear radius is γ.

The series

$$
\begin{equation*}
\sum_{n=0}^{\infty} u_{n} \tag{1.3}
\end{equation*}
$$

is said to be strongly summable (c, k) or summable $[c, k]$ to the sum S, if

$$
\begin{equation*}
\sum_{\nu=0}^{n}\left|s_{\nu}^{(k-1)}-s\right|=0(n) \tag{1.4}
\end{equation*}
$$

where $s_{\nu}^{(k-1)}$ denotes the ν-th cesaro mean of order $(k-1)$ of the series (1.3).

Again, we say that the series (1.3) is strongly summable (R, k) or summable $[R, k]$ to the sum S, if

$$
\begin{equation*}
\sum_{\nu=0}^{n} \frac{\left|s_{\nu}^{(k-1)}-s\right|}{\nu+1}=0(\log n) . \tag{1.5}
\end{equation*}
$$

The object of this paper is to obtain some new results for the series (1.1) on its [$c, k]$ and $[R, k]$ summability.

We prove the following theorems:
Theorem 1: If

$$
\begin{equation*}
\varphi(t) \equiv \int_{t}^{s} \frac{|\phi(\gamma)|}{\gamma} d \gamma=0\left[t\left(\log \frac{1}{t}\right)^{\alpha}\right], \quad(\alpha>0) \tag{1.6}
\end{equation*}
$$

as $t \rightarrow 0,(0<\delta \leq \pi)$, then

$$
\begin{equation*}
\sum_{\nu=0}^{n}\left|\sigma_{\nu}^{(k)}(\gamma)-\sigma\right|=0\left[n(\log n)^{\alpha}\right], \quad(0 \leq k \leq 1) \tag{1.7}
\end{equation*}
$$

