6. On the Images of Connected Pieces of Covering Surfaces. I

By Zenjiro KURAMOCHI

Mathematical Institute, Hokkaido University (Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1963)

Let w=f(z) be an analytic function in |z|<1. It is interesting to consider the distribution of zero-points of f(z)-a=0. Suppose f(z)is of bounded type. Let $\{a_i\}$ be the set of *a*-points of f(z). Then it is well known that $\sum_i G(z, a_i) < \infty$, where $G(z, a_i)$ is the Green's function of |z|<1. In the present paper we consider the distribution of the set $f^{-1}(C(\rho, w_0))$ in |z|<1, where $C(\rho, w_0)=E[w:|w-w_0|<\rho]$.

Let R be a Riemann surface with positive boundary and let $R_n(n=0, 1, 2, \cdots)$ be its exhaustion with compact relative boundary ∂R_n . Let $G \subseteq G'$ be domains¹⁾ in R, where G and G' may consist of at most enumerably infinite number of components. Let $w_n(z)$ be the least positive superharmonic function in G' such that $w_n(z) \ge 1$ on $G \cap (R-R_n)$. Put $w(B \cap G, z, G') = \lim_n w_n(z)$ and call it^{2} H.M. of $(G \cap B)$. If there exists a number n_0 such that $D(\omega_n(z)) < M < \infty$ for $n \ge n_0$, where $\omega_n(z)$ is a harmonic function in G' such that $\omega_n(z)=1$ on $G \cap R-R_n$, =0 on $\partial G'$ and has M.D.I. (minimal Dirichlet integral), $\omega_n(z) \rightarrow^{2}$ in mean to $\omega(G \cap B, z, G')$ called C.P. of $(G \cap B)$. In case G'=R, we write $w(G \cap B, z)$ and if $G'=R-R_0$, we write $\omega(G \cap B, z)$ simply. Put $S(G, r)=E[z \in G: |z|=r]$.

Let G be a domain (of one component) in |z| < 1. If there exists no bounded harmonic function in G vanishing on ∂G , i.e. $w(G \cap B, z, G) = 0$, we say that G is almost compact. Let $C(\rho, w_0)$ be a circle in the w-plane. Then $f^{-1}(C(\rho, w_0))$ is composed of at most enumerably infinite number of components (connected pieces) g_1, g_2, \cdots . If a domain G is a subset of $\{g_i\}$, we call G a D.G. (domain generated) of $f^{-1}(C(\rho, w_0))$. At first we shall prove by simple method the following

Theorem 1. Let w=f(z) be an analytic function in |z|<1 such that $|f(z)| \leq M$.

a) Let G be a D.G. of $f^{-1}(C(\rho, w_0))$ and let G' be a D.G. of $f^{-1}(C(\rho' w_0))$ containing $G: \rho < \rho'$. Then $w(G \cap B, z) > 0$ if and only if there exists at least one component g' of G' such that $w(G \cap B, z, g') > 0$ for any $\rho' > \rho$.

¹⁾ In the present paper we suppose the relative boundary of a domain consists of analytic curves clustering nowhere in R.

²⁾ Z. Kuramochi: Potentials on Riemann surfaces: Journ. Sci. Hokkaido Univ. 14 (1962).