26. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. VI

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1963)

On the assumption that ζ and Ω denote respectively a given complex number and an appropriately large circle with center at the origin and that the ordinary part $R(\lambda)$ of the function $S(\lambda)$ defined in the statement of Theorem 1 [1] is a transcendental integral function, in this paper we shall discuss the relation between the distribution of ζ -points of $S(\lambda)$ and that of ζ -points of $R(\lambda)$ in the exterior of the same circle Ω and shall then show that, if each of $S(\lambda)$ and $R(\lambda)$ has its finite exceptional value for the exterior of Ω , the two exceptional values are identical under some conditions.

Theorem 16. Let $S(\lambda), R(\lambda)$, and $\{\lambda_{\nu}\}$ be the same notations as those in Theorem 1; let σ be an appropriately large number such that $\sup_{\nu} |\lambda_{\nu}| < \sigma < \infty$; let $\{z_n\}$ be an infinite sequence of all ζ -points of $R(\lambda)$ in the exterior of the circle $|\lambda| = \sigma$ such that

$$\frac{R(z_n) = \zeta}{\sigma < |z_n| \le |z_{n+1}|} \Big\} (n = 1, 2, 3, \cdots)$$

and $|z_n| \to \infty$ $(n \to \infty)$, each ζ -point being counted with the proper multiplicity; let

$$C = \sup_{n} \left\{ \frac{1}{2\pi} \left| \int_{0}^{2\pi} S(\rho e^{it}) e^{int} dt \right| \right\} \ (<\infty),$$

where ρ is an arbitrarily prescribed number subject to the condition $\sup_{\nu_n} |\lambda_{\nu}| < \rho < \infty$; let μ be the greatest value of the positive integers ν_n in the first non-zero coefficients $R^{(\nu_n)}(z_n)/\nu_n!$ of the Taylor expansions of $R(\lambda)$ at $z_n, n=1, 2, 3, \cdots$; let $m \equiv \inf_{n} \{|R^{(\nu_n)}(z_n)|/\nu_n!\}$ be positive; let $M \equiv \sup_{n} [\max_{k} \{|R^{(k)}(z_n)|/k!\}]$ $(n, k=1, 2, 3, \cdots)$ be finite; and let r be an arbitrarily given number such that 0 < r < m/(M+m). Then, in the interior of the circle $|\lambda - z_n| = r$ associated with any z_n satisfying

$$\left\{ rac{C}{r^{\mu}\!\!\left(\,m\!-\!rac{Mr}{1\!-\!r}
ight)}\!+\!1
ight\}\!
ho\!+\!r\!<\!|z_n|,$$

 $S(\lambda)$ has ζ -points whose number (counted according to multiplicity) equals that of ζ -points of $R(\lambda)$ in the interior of the same circle as it.

Proof. It must first be noted that the case where $R(\lambda)$ has such ζ -points $\{z_n\}$ as was described in the statement of the present theorem