35. On the Product of a Normal Space with a Metric Space

By Kiiti Morita

Department of Mathematics, Tokyo University of Education (Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1963)

Let X be a topological space. Then the topological product of X with every metrizable space is proved to be normal for the following three cases.

- I. X is paracompact and perfectly normal (E. Michael [2]).
- II. X is paracompact and topologically complete in the sense of E. $\check{C}ech$ (Z. Frolik [1]).
- III. X is countably compact and normal (A. H. Stone [4]).

Quite recently E. Michael [3] has shown that the product space $X \times Y$ is not normal in general even if X is a hereditarily paracompact Hausdorff space with the Lindelöf property and Y is a separable metric space.

In view of these facts it is desirable to find a necessary and sufficient condition for X to possess the property that the product space $X \times Y$ be normal for any metrizable space Y. This problem, however, was open until now (cf. H. Tamano [5]). The purpose of this note is to give a solution to this problem. The proofs and the details of the results will be published elsewhere.

1. Let us consider the following condition for a topological space X.

For any set Ω of indices and for any family $\{G(\alpha_1, \dots, \alpha_i) | \alpha_1, \dots, \alpha_i \in \Omega; i=1, 2, \dots\}$ of open subsets of X satisfying the condition (1) $G(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i, \alpha_{i+1})$ for $\alpha_1, \dots, \alpha_{i+1} \in \Omega$ and for $i=1, 2, \dots$

there exists a family $\{F(\alpha_1, \dots, \alpha_i) | \alpha_1, \dots, \alpha_i \in \Omega, i=1, 2, \dots\}$ of closed subsets of X satisfying the following two conditions:

(2)
$$F(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i)$$
 for $\alpha_1, \dots, \alpha_i \in \Omega$.

(3) If
$$\bigcup_{i=1}^{\omega} G(\alpha_1, \cdots, \alpha_i) = X$$
, then $\bigcup_{i=1}^{\omega} F(\alpha_1, \cdots, \alpha_i) = X$.

We shall say that X is a *P*-space if X satisfies the above condition.

As is well known, a normal space X is countably paracompact if and only if for any countable open covering $\{G_i\}$ of X with $G_i \subset G_{i+1}$, $i=1, 2, \cdots$ there exists a countable closed covering $\{F_i\}$ of X such that $F_i \subset G_i$, $i=1, 2, \cdots$. Hence a normal P-space is always countably paracompact. On the other hand, it follows from an example of Michael [3], in view of our Theorem 2.1 below, that a