35. On the Product of a Normal Space with a Metric Space

By Kiiti Morita
Department of Mathematics, Tokyo University of Education (Comm. by Kinjirô Kunugi, m.J.A., March 12, 1963)

Let X be a topological space. Then the topological product of X with every metrizable space is proved to be normal for the following three cases.
I. $\quad X$ is paracompact and perfectly normal (E. Michael [2]).
II. X is paracompact and topologically complete in the sense of E. Cech (Z. Frolik [1]).
III. X is countably compact and normal (A. H. Stone [4]). Quite recently E. Michael [3] has shown that the product space $X \times Y$ is not normal in general even if X is a hereditarily paracompact Hausdorff space with the Lindelöf property and Y is a separable metric space.

In view of these facts it is desirable to find a necessary and sufficient condition for X to possess the property that the product space $X \times Y$ be normal for any metrizable space Y. This problem, however, was open until now (cf. H. Tamano [5]). The purpose of this note is to give a solution to this problem. The proofs and the details of the results will be published elsewhere.

1. Let us consider the following condition for a topological space X.

For any set Ω of indices and for any family $\left\{G\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid\right.$ $\left.\alpha_{1}, \cdots, \alpha_{i} \in \Omega ; i=1,2, \cdots\right\}$ of open subsets of X satisfying the condition (1) $G\left(\alpha_{1}, \cdots, \alpha_{i}\right) \subset G\left(\alpha_{1}, \cdots, \alpha_{i}, \alpha_{i+1}\right)$ for $\alpha_{1}, \cdots, \alpha_{i+1} \in \Omega$

$$
\text { and for } i=1,2, \ldots
$$

there exists a family $\left\{F\left(\alpha_{1}, \cdots, \alpha_{i}\right) \mid \alpha_{1}, \cdots, \alpha_{i} \in \Omega, i=1,2, \cdots\right\}$ of closed subsets of X satisfying the following two conditions:

$$
\begin{equation*}
F\left(\alpha_{1}, \cdots, \alpha_{i}\right) \subset G\left(\alpha_{1}, \cdots, \alpha_{i}\right) \quad \text { for } \quad \alpha_{1}, \cdots, \alpha_{i} \in \Omega . \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } \bigcup_{i=1}^{\infty} G\left(\alpha_{1}, \cdots, \alpha_{i}\right)=X \text {, then } \bigcup_{i=1}^{\infty} F\left(\alpha_{1}, \cdots, \alpha_{i}\right)=X \tag{3}
\end{equation*}
$$

We shall say that X is a P-space if X satisfies the above condition.

As is well known, a normal space X is countably paracompact if and only if for any countable open covering $\left\{G_{i}\right\}$ of X with $G_{i} \subset G_{i+1}, i=1,2, \cdots$ there exists a countable closed covering $\left\{F_{i}\right\}$ of X such that $F_{i} \subset G_{i}, i=1,2, \cdots$. Hence a normal P-space is always countably paracompact. On the other hand, it follows from an example of Michael [3], in view of our Theorem 2.1 below, that a

