49. On Cesàro Summability of Fourier-Laguerre Series

By A. N. S. Singroura
(Comm. by Kinjirô Kunugi, m.J.A., April 12, 1963)

1. The Fourier-Laguerre expansion corresponding to a function $f(x) \in L(0, \infty)$ is given by

$$
\begin{equation*}
f(x) \sim \sum_{n=0}^{\infty} a_{n} L_{n}^{(\alpha)}(x) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma(\alpha+1)\binom{n+\alpha}{n} a_{n}=\int_{0}^{+\infty} e^{-x} x^{\alpha} f(x) L_{n}^{(\alpha)}(x) d x \tag{1.2}
\end{equation*}
$$

and $L_{n}^{(\alpha)}$ denotes the Laguerre polynomial of order α.
At the point $X=0$

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} L_{n}^{(\alpha)}(0)=\frac{1}{\Gamma(\alpha+1)} \sum_{n=0}^{\infty} \int_{0}^{\infty} e^{-t} t^{\alpha} f(t) L_{n}^{(\alpha)}(t) d t . \tag{1.3}
\end{equation*}
$$

Denoting the Cesàro means of order k of the series (1.1) at the point $X=0$ by $\sigma_{n}^{k}(0)$, we easily have

$$
\begin{equation*}
\sigma_{n}^{k}(0)=\left\{A_{n}^{(k)} \Gamma(\alpha+1)\right\}^{-1} \int_{0}^{\infty} e^{-t} t^{\alpha} f(t) L_{n}^{(\alpha+k+1)}(t) d t \tag{1.4}
\end{equation*}
$$

Szegö [1] has studied the (C, k) summability of Laguerre series corresponding to a continuous function for $k>\alpha+\frac{1}{2}$.

In the present paper I prove the following more general theorem:-
Theorem. If $f(x)$ be integrable in ($0, \infty$) and if it satisfies the following conditions

$$
\begin{align*}
& \int_{1}^{\infty} e^{-\frac{x}{2}} x^{\alpha-k-\frac{1}{3}}|f(x)| d x<\infty, \text { and } \tag{1.5}\\
& \int_{0}^{t}|f(t)| d t=o(t) \tag{1.6}
\end{align*}
$$

then the Laguerre series of $f(x)$ is (C, k) summable at $x=0$ with the sum of $f(0)$ provided that $k>\alpha+\frac{1}{2}$.
2. We shall take help of the following lemmas in the proof of the theorem:-

Lemma 1 (Szegö [2], p. 172). Let α be arbitrary and real, C and ω fixed positive constants, and let $\mathrm{n} \rightarrow \infty$. Then

$$
L_{n}^{(\alpha)}(x)= \begin{cases}x^{-\frac{\alpha}{2}-\frac{1}{4}} 0\left(n^{\frac{\alpha}{2}-\frac{1}{4}}\right), & \text { if, } \frac{c}{n} \leq x \leq \omega \tag{2.1}\\ 0\left(n^{\alpha}\right) & \text { if, } 0 \leq x \leq \frac{c}{n}\end{cases}
$$

Lemma 2 (Szegö [2], p. 235). Let α and λ be arbitrary and real

