45. Continuity of Path Functions of Strictly Stationary Linear Processes

By Yumiko Sato
Department of Mathematics, Rikkyo University, Tokyo
(Comm. by Zyoiti Suetuna, April 12, 1963)

Let $X(t),-\infty<t<+\infty$, be a mean continuous purely non-deterministic weakly stationary process with $E X(t)=0$. Then, by Karhunen [5], $X(t)$ can be expressed in the following form.

$$
\begin{equation*}
X(t)=\int_{-\infty}^{t} g(t-u) d Z(u) \tag{1}
\end{equation*}
$$

where the function g is in $L_{2}(R)$ and $d Z$ is an orthogonal random measure such that $E(d Z(u))^{2}=d u$. Further, let $\mathfrak{M}_{t}(X), \mathfrak{M}(X)$ and $\mathfrak{M}_{t}(Z)$ be closed linear manifolds spanned by $\{X(\tau) ; \tau \leq t\},\{X(\tau) ;-\infty<\tau<+\infty\}$ and $\left\{Z(\tau)-Z\left(\tau^{\prime}\right) ; \tau, \tau^{\prime} \leq t\right\}$, respectively. We can take g and $d Z$ to satisfy $\mathfrak{m}_{t}(X)=\mathfrak{m}_{t}(Z)$, uniquely up to the constant multiple with absolute value one.

Next, following P. Lévy and Hida-Ikeda [2], we call $X(t)$ a linear process if $\mathfrak{M}_{t}(X)$ and $\mathfrak{M}_{t}^{\perp}(X)=\left\{\right.$ the orthogonal complement of $\mathfrak{M}_{t}(X)$ in $\mathfrak{M}(X)\}$ are mutually independent for each t.

Proposition. Let $X(t)$ be a strictly stationary process with canonical representation of the form (1). Then $X(t)$ is a linear process if and only if $Z_{a}(t)=Z(t)-Z(a), t \geq a$, is a temporally homogeneous additive process for each a.

The proof of 'if' part is found in Hida-Ikeda [2]. 'Only if' part is easily proved by the definition of canonical representation.

In the following we assume $X(t)$ to be strictly stationary and linear. We want to investigate properties of its path functions.

An additive process which is continuous in probability may be considered as a Lévy process by taking an appropriate version. Hence, by Lévy-Itô's decomposition, we can write

$$
\begin{equation*}
Z(t)-Z(a)=\sqrt{v}\left(B_{0}(t)-B_{0}(a)\right)+P(t)-P(a) \tag{2}
\end{equation*}
$$

where $B_{0}(t)$ is the standard Brownian motion and $P(t)-P(a)$ is the Poisson part. Then (1) and (2) imply

$$
\begin{equation*}
X(t)=\sqrt{v} \int_{-\infty}^{t} g(t-u) d B_{0}(u)+\int_{-\infty}^{t} g(t-u) d P(u) \tag{3}
\end{equation*}
$$

We denote the first term on the right side by $X_{1}(t)$ and the second by $X_{2}(t) . \quad X_{1}(t)$ is a Gaussian stationary process and the properties of its path functions are investigated by Hunt [3] and Belayev [1]. So we shall treat $X_{2}(t)$ and give a sufficient condition for the continuity

