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Let C(X) be the algebra of all complex-valued continuous functions
on a compact Hausdorff space X. By a function algebra we mean a
closed (by supremum norm) subalgebra in C(X) containing constants
and separating points of X. For FX, let fIF be the restriction
of the function f to F and A]F--{flF;feA}. We easily see that
for any closed subset F containing the Silov boundary 3A of A (cf.
[1], [6), A]F is closed in C(F). Conversely, it is natural to raise
the following question: Let Fo be a closed subset in X and let
be closed in C(F) for any closed subset F containing Fo. Then, does
F0 contain 3A? The main purpose of this note is to answer the
question under certain conditions (Theorems 1 and 2). The proof of
Theorem 1 is a modification of that of Glicksberg’s theorem (cf. [3])
and we obtain the Glicksberg’s theorem as a corollary.

Let A be a function algebra on X. Then there is a unique minimal
closed subset E of X such that any continuous function zero on E
is in A. This closed subset E is called the essential set of A. A
is an essential algebra if the essential set of A is X (cf. [2]). A
function algebra A is said to be an antisymmetric algebra (or an
analytic algebra) if any real-valued function in A is always constant
(or any function in A vanishing on a non-empty open set in X is
always identically zero) (cf. [4]). An analytic algebra is antisymmetric
and an antisymmetric algebra is an essential algebra (cf. [4]).

Our main theorem is the following
Theorem 1. Let A be an essential algebra and let Fo be a closed

subset in X. If A IF is closed in C(F) for any closed subset F con-
taining Fo, then Fo contains the Silov boundary A of A. *)

Proof. We set first F--{y]yX, If(y)]=< suplf(x)] for any fA}.
Then we see that F, is a closed set in X containing F0. If F--X,
then suplf(x)]=sup]f(x)[=sup]f(x)] for any feA, so Fo3A. There-

fore, in order to prove the theorem we need only to show that F--X.
Suppose the contrary: X4: F. We can show first that there is a
function f eA such that f(x)=l on P and f(x)=O on Q for any closed
set P and for any closed set Q with QF, PQ=O. For, let p,q

*) After this paper had been accepted for publication, Prof. I. Glicksberg informed
me that this theorem can be also proved by direct use of his theorem -3].


