93. Note on Balayage and Maximum Principles

By Masanori KISHI

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1963)

1. Let Ω be a locally compact Hausdorff space, every compact subset of which is separable, and G be a positive lower semicontinuous kernel on Ω such that G(x, y) is locally bounded at any point (x, y) $\in \Omega \times \Omega$ with $x \neq y$. The *adjoint* kernel \check{G} of G is defined by $\check{G}(x, y)$ =G(y, x). Given a positive measure μ , its potential $G\mu(x)$ and adjoint potential $\check{G}\mu(x)$ are defined by

$$G\mu(x) = \int G(x, y)d\mu(y)$$
 and $\check{G}\mu(x) = \int \check{G}(x, y)d\mu(y)$

respectively.

This note is a summary of some relations among the balayage principle and related maximum principles in the potential theory. The details will be published later elsewhere.

2. Definitions. We say that a property holds G-p.p.p. on a subset $X \subset \Omega$, when any compact subset of the set of points in X at which the property is missing does not support any positive measure $\nu \neq 0$ with finite G-energy $\int G_{\nu} d\nu$.

(I) Continuity principle. For any positive measure μ with compact support $S\mu$, if the restriction of $G\mu(x)$ to $S\mu$ is finite and continuous, then $G\mu(x)$ is finite and continuous in the whole space Ω .

(II) Balayage principle. For any compact set K and any positive measure μ , there exists a positive measure μ' , supported by K, such that

$$G\mu'(x) \leq G\mu(x)$$
 in Ω ,
 $G\mu'(x) = G\mu(x)$ G-p.p.p. on K.

(III) Equilibrium principle. For any compact set K, there exists a positive measure μ , supported by K, such that

 $\begin{array}{ll} G\mu(x) \leq 1 & \text{in } \mathcal{Q}, \\ G\mu(x) = 1 & G\text{-}p.p.p. \text{ on } K. \end{array}$

(IV) Domination principle. For a positive measure μ with compact support and finite G-energy and for a positive measure ν with compact support, an inequality $G\mu(x) \leq G\nu(x)$ on $S\mu$, the support of μ , implies the same inequality in Ω .

(V) Maximum principle. For a positive measure μ with compact support, the validity of an inequality $G\mu(x) \leq 1$ on $S\mu$ implies that of the same inequality in Ω .