139. A Note on Intra-regular Semigroups

By Sandor LAJOS

University of Economics, Budapest, Hungary (Comm. by Kenjiro SHODA, M.J.A., Nov. 12, 1963)

Following Clifford and Preston [2] we shall say that a semigroup S is intra-regular if, for any element a of S, there exist x and y in S such that

 $xa^2y=a$,

that is, S is intra-regular if $a \in Sa^2S$, for all a in S.

It is easy to see that e.g. every semigroup admitting relative inverses (see: [1]) is an intra-regular semigroup. A subset X of a semigroup S is called semiprime if $a^2 \in X$, $a \in S$ imply $a \in X$. It is known that a semigroup S is intra-regular if and only if every twosided ideal of S is semiprime (see: [2] Lemma 4.1). Throughout this paper, by ideal we shall mean two-sided ideal. For the fundamental concepts of the algebraic theory of semigroups we refer to [2] and [4].

In this note we prove the following

Theorem. Every ideal of an ideal of an intra-regular semigroup S is an ideal of S.

For the proof we need the following

Lemma 1. In an intra-regular semigroup every ideal A is idempotent, that is, $A^2 = A$.

Proof. Let S be an intra-regular semigroup, and let A be an ideal of s. We prove that $A \subseteq A^2$. Let $a \in A$, then $a^2 \in A^2$. This implies that $a \in A^2$, because A^2 is an ideal of S, and every ideal of S is semiprime. Since $A^2 \subseteq A$, we obtain that $A^2 = A$. Thus every ideal of S is idempotent.

Lemma 2. Let S be an arbitrary semigroup, and let B be an ideal of an ideal a of S. Denote by \overline{B} the ideal of S generated by B. Then $\overline{B}^{3} \subset B$.

Proof. Since

 $\vec{B} = B(|BS||SB||SBS)$

it follows that

 $\overline{B}^{3} \subseteq A\overline{B}A = A(B \cup BS \cup SB \cup SBS)A \subseteq B,$

which we wished to prove.

Now we can prove the above theorem. Let S be an intra-regular semigroup. Let A be an ideal of S, and let B be an ideal of the semigroup A. Denote by \overline{B} the ideal of S generated by B. Then