158. On Fields of Division Points of Algebraic Function Fields of One Variable

By Makoto Ishida

Department of Mathematics, Tsuda College, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Dec. 12, 1963)

Let K be a field of algebraic functions of one variable over an algebraically closed constant field k. Let $D_0(K)$ be the group of all the divisors of degree 0 of K and C(K) the divisor class group of K, i.e. the factor group of $D_0(K)$ by the subgroup consisting of all the divisors which are linearly equivalent to 0 (in notation: ~ 0). We use the additive notation for the group laws of $D_0(K)$ and C(K). Let g be the genus of K. Then, for a natural number n prime to the characteristic of k, it is known that there exist exactly n^{2q} elements c_1, \dots, c_N ($N=n^{2q}$) of C(K) such that $nc_i=0$. We call these c_i the n-division points of C(K).

Let D_1, \dots, D_N be an arbitrary system of representative divisors of the classes c_1, \dots, c_N (c_i is the divisor class containing D_i). Then nD_i is linearly equivalent to 0 and so there exist N elements x_1, \dots, x_N of K such that the divisor (x_i) of x_i is equal to nD_i . We consider the subfield $K_n = k(x_1, \dots, x_N)$ of K generated by x_1, \dots, x_N over k. We shall call such a field K_n a field of n-division points of K. Since there are infinitely many choices of systems of representative divisors of the classes c_i , there are also, for a fixed given n, infinitely many fields of n-division points of K. We note that if n > 1, K_n has the transcendental degree 1 over k and so the degree $[K:K_n]$ is finite. In fact, for n > 1, some c_i is not equal to 0 and so x_i is not a constant.

Now we shall prove the following

Theorem. Suppose $g \ge 2$. Let $l \ge 3$ be a prime number different from the characteristic of k. Then, for any field K_i of l-division points of K, K is purely inseparable over K_i . In particular, if the characteristic of k is 0, we have $K = K_i$.

The case where l=2 (and the characteristic =0) was considered by Arima in [1]. We shall prove our theorem in the separable case by the same idea.

The proof of the theorem is divided into two cases.

1) First we consider the case where K is separable over K_i . We assume that $K \neq K_i$ and deduce a contradiction. Let g_0 be the genus of K_i . Then, as $g \ge 2$ and $K \neq K_i$, we have $g > g_0$ by the formula of Hurwitz. We denote by $(x_i)_K$ and $(x_i)_{K_i}$ the divisors of the function