158. On Fields of Division Points of Algebraic Function Fields of One Variable

By Makoto IsHidA
Department of Mathematics, Tsuda College, Tokyo
(Comm. by Zyoiti Suetuna, m.J.A., Dec. 12, 1963)

Let K be a field of algebraic functions of one variable over an algebraically closed constant field k. Let $D_{0}(K)$ be the group of all the divisors of degree 0 of K and $C(K)$ the divisor class group of K, i.e. the factor group of $D_{0}(K)$ by the subgroup consisting of all the divisors which are linearly equivalent to 0 (in notation: ~ 0). We use the additive notation for the group laws of $D_{0}(K)$ and $C(K)$. Let g be the genus of K. Then, for a natural number n prime to the characteristic of k, it is known that there exist exactly $n^{2 g}$ elements $c_{1}, \cdots, c_{N}\left(N=n^{2 g}\right)$ of $C(K)$ such that $n c_{i}=0$. We call these c_{i} the n-division points of $C(K)$.

Let D_{1}, \cdots, D_{N} be an arbitrary system of representative divisors of the classes c_{1}, \cdots, c_{N} (c_{i} is the divisor class containing D_{i}). Then $n D_{i}$ is linearly equivalent to 0 and so there exist N elements x_{1}, \cdots, x_{N} of K such that the divisor $\left(x_{i}\right)$ of x_{i} is equal to $n D_{i}$. We consider the subfield $K_{n}=k\left(x_{1}, \cdots, x_{N}\right)$ of K generated by x_{1}, \cdots, x_{N} over k. We shall call such a field K_{n} a field of n-division points of K. Since there are infinitely many choices of systems of representative divisors of the classes c_{i}, there are also, for a fixed given n, infinitely many fields of n-division points of K. We note that if $n>1, K_{n}$ has the transcendental degree 1 over k and so the degree $\left[K: K_{n}\right.$] is finite. In fact, for $n>1$, some c_{i} is not equal to 0 and so x_{i} is not a constant.

Now we shall prove the following
Theorem. Suppose $g \geqq 2$. Let $l \geqq 3$ be a prime number different from the characteristic of k. Then, for any field K_{l} of l-division points of K, K is purely inseparable over K_{l}. In particular, if the characteristic of k is 0 , we have $K=K_{l}$.

The case where $l=2$ (and the characteristic $=0$) was considered by Arima in [1]. We shall prove our theorem in the separable case by the same idea.

The proof of the theorem is divided into two cases.

1) First we consider the case where K is separable over K_{l}. We assume that $K \neq K_{l}$ and deduce a contradiction. Let g_{0} be the genus of K_{l}. Then, as $g \geqq 2$ and $K \neq K_{l}$, we have $g>g_{0}$ by the formula of Hurwitz. We denote by $\left(x_{i}\right)_{K}$ and $\left(x_{i}\right)_{x_{l}}$ the divisors of the function
