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1. Introduction. The concept of Bochner transforms is a gene-
ralization of Fourier transforms of radial functions. (Bochner [1
and Iwasaki [23.) In this paper we shall define Bochner transforms
attached to the space of matrices M(n, R) and investigate some of
its properties. As an analogy to the case of the one-dimensional
Euclidean space we get "n-dimensional Bessel functions". We shall
give Bessel differential equations for these functions.

Probably the Bochner transforms have a close relation to Siegel
modular functions. We shall discuss in this direction elsewhere.

2. Definitions and notations. We denote by Po-Po(n, R) the
space of non-negative symmetric matrices of degree n, by P the set
of strictly positive elements in P0 and M the space of continuous
functions on P0 which is C on P, invariant by the automorphism of

Po, x"tuxu where u e U= O(n, R), and (det x)-l(x) dx is conver-

gent. Now e

Definition. The Bochner transform T= T?, is a linear operator
on M which satisfies the following conditions (B):

(__(B) the function s(x)--exp 2___ tr x) is mapped to itself by T,

(B) f(twtuxuw)du with eM and weGL(n, R) is mapped by
U

T, as a function of x, to

fv - - \normalized(dUis the Haarby measurel on U)T(w tucut$o-)du" det w
du=
U

(B) f(det x)q(x)4(x)dx-- f(det
P P

where 9, eM and dx is a measure on P invariant by x-->twxw (see
E2).

Any element f of M is a spherical function on P, therefore it
has the Fourier transform in Gelfand-Selberg sense. On our stand
point it may be called the Mellin transform of and it is defined
as follows (Selberg 3 pp. 56-59):


