156. On Bochner Transforms. II

A Generalization Attached to M(n, R) and "an" n-Dimensional Bessel Function

By Koziro Iwasaki

Musashi Institute of Technology, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Dec. 12, 1963)

1. Introduction. The concept of Bochner transforms is a generalization of Fourier transforms of radial functions. (Bochner [1] and Iwasaki [2].) In this paper we shall define Bochner transforms attached to the space of matrices $M(n, \mathbf{R})$ and investigate some of its properties. As an analogy to the case of the one-dimensional Euclidean space we get "*n*-dimensional Bessel functions". We shall give Bessel differential equations for these functions.

Probably the Bochner transforms have a close relation to Siegel modular functions. We shall discuss in this direction elsewhere.

2. Definitions and notations. We denote by $P_0 = P_0(n, R)$ the space of non-negative symmetric matrices of degree n, by P the set of strictly positive elements in P_0 and M_k the space of continuous functions on P_0 which is C^{∞} on P, invariant by the automorphism of $P_0, x \rightarrow^i uxu$ where $u \in U = O(n, R)$, and $\int_P (\det x)^{\frac{k}{2}} |\varphi(x)|^2 dx$ is convergent. Now

Definition. The Bochner transform $T = T_{i,k}^n$ is a linear operator on M_k which satisfies the following conditions (B):

(B₁) the function $\varepsilon(x) = \exp\left(-\frac{2\pi}{\lambda} \operatorname{tr} x\right)$ is mapped to itself by T,

(B₂) $\int_{U} \varphi({}^{t}w{}^{t}uxuw) du$ with $\varphi \in M_{k}$ and $w \in GL(n, \mathbf{R})$ is mapped by

T, as a function of x, to

$$\int_{U} T\varphi(w^{-1} uxu^{t}w^{-1})du \cdot |\det w|^{-k} \begin{pmatrix} du \text{ is the Haar measure on } U \\ \text{normalized by } \int_{U} du = 1 \end{pmatrix},$$

$$(B_{3}) \int (\det x)^{\frac{k}{2}}\varphi(x)\psi(x)dx = \int (\det x)^{\frac{k}{2}}T\varphi(x)T\psi(x)dx,$$

where $\varphi, \psi \in M_k$ and dx is a measure on **P** invariant by $x \rightarrow t w x w$ (see [2]).

Any element φ of M_k is a spherical function on P, therefore it has the Fourier transform in Gelfand-Selberg sense. On our stand point it may be called the *Mellin transform* of φ and it is defined as follows (Selberg [3] pp. 56-59):