3. Certain Embedding Problems of Semigroups

By Takayuki Tamura and N. Graham
(Comm. by Kenjiro Shoda, m.J.A., Jan. 13, 1964)

1. By a left translation of a semigroup S we mean a transformation λ of $S, x \rightarrow x \lambda$, satisfying $(x y) \lambda=(x \lambda) y$, for all x, y in S. A right translation of S is a transformation ρ satisfying $(x y) \rho=x(y \rho)$, for all x, y in S. A left translation λ and a right translation ρ are said to be linked if $x(y \lambda)=(x \rho) y$, for all x, y in S. We note that for each a in S, the transformation λ_{a} defined by $x \lambda_{a}=a x$, for all x in S, is a left translation of S, the transformation ρ_{a} defined by $x \rho_{a}$ $=x a$, for all x in S, is a right translation of S, and λ_{a} and ρ_{a} are linked. We call λ_{a} an inner left translation of S, ρ_{a} an inner right translation of S. A semigroup S is said to be weakly reductive if, for any a, b in $S, a x=b x$ and $x a=x b$, for all x in S, imply $a=b$.

It was proved in [1] that a weakly reductive semigroup S can be embedded into a semigroup T so that
(1) S is an ideal of T,
(2) every left translation of S is induced by some inner left translation of T, and every right translation of S is induced by some inner right translation of T,
if and only if
(3) every left translation of S is linked with some right translation of S, and vice versa.
However, the general case in which weak reductivity is not assumed was open. In this paper we shall give necessary and sufficient conditions for an arbitrary semigroup S so that it can be embedded into a semigroup T with the properties (1) and (2). The special case for weakly reductive semigroups will follow as a corollary. We shall also discuss the embedding of a semigroup S into a semigroup T under conditions somewhat weaker than (1) and (2).
2. The open problem in [1] can be solved as follows:

Theorem 1. A semigroup S can be embedded into a semigroup T so that
(1) $S T \subseteq S, T S \subseteq S$,
(2) for every left translation λ of S there exists a in T such that $x \lambda=a x$, for all x in S, and for every right translation ρ of S there exists b in T such that $x \rho=x b$, for all x in S, if and only if
(3) every left translation of S is linked with some right translation of S, and vice versa,

