# 17. On Adjoint Maps between Dual Systems 

By Perla López de Cicileo and Kiyoshi Iséki<br>Universidad Nacional del Sur Bahía Blanca, Argentina<br>(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1964)

Let $E, F$ be linear spaces, $\alpha$ a bilinear form on $E \times F$. A pair of $E, F$ is called a dual system on $\alpha$ if

$$
\alpha(x, y)=0 \quad \text { for all } x \in E \text { implies } y=0
$$

2) $\quad \alpha(x, y)=0$ for all $y \in F$ implies $x=0$.

Let $E, F$ be a dual system on $\alpha$, and let $G, H$ be a dual system on $\beta$. If $u$ is a linear map from $E$ to $G$, then $\beta\left(u(x), y^{\prime}\right)$ is bilinear on $G \times H$, where $y^{\prime} \in H$. Put $\alpha\left(x, u^{*}\left(y^{\prime}\right)\right)=\beta\left(u(x), y^{\prime}\right)$ for all $x \in E$ and $y^{\prime} \in H$, if $u^{*}$ is defined, it is a map from $H$ to $F . u^{*}$ is called the algebraic adjoint map of $u$. If $B$ is of finite dimension, $u^{*}$ is always well defined. In a Hilbert space with many inner products, we can define the adjoint on these inner products of a continuous linear map. The other example is the usual adjoint map. Let $A$ be a subset of $E$ (or $F$ ), the orthogonal part $A^{\perp}$ is defined by the set $\{y \mid \alpha(x, y)=0$ for all $x \in A\}$ (or $\{x \mid \alpha(x, y)=0$ for all $y \in A$ ). Similarly we can also consider the orthogonal part for $G, H$, and $\beta$.

We shall consider a system in which the adjoint map is well defined.

Then we have the following fundamental
Proposition 1. For a linear subspace $A$ of $E$,

$$
u^{*-1}\left(A^{\perp}\right)=(u(A))^{\perp} .
$$

Proposition 2. For a linear subspace $B$ of $G$, $\left(u^{-1}(B)\right)^{\perp}=u^{*}\left(B^{\perp}\right)$.
Proof of Proposition 1. Let $y^{\prime} \in u^{*-1}\left(A^{\perp}\right)$, then for all $x \in A$, $0=\alpha\left(x, u^{*}\left(y^{\prime}\right)\right)=\beta\left(u(x), y^{\prime}\right)$ and so $y^{\prime} \in u(A)^{\perp}$. Conversely if $y^{\prime} \in(u(A))^{\perp}$, then $0=\beta\left(u(x), y^{\prime}\right)=\alpha\left(x, u^{*}\left(y^{\prime}\right)\right)$ for all $x \in A$. Hence $u^{*}\left(y^{\prime}\right) \subset A^{\perp}$, and $y^{\prime} \in u^{*-1}\left(A^{\perp}\right)$.

Proof of Proposition 2. Let $y \in u^{*}\left(B^{\perp}\right)$, there is an element $y^{\prime} \in B^{\perp}$ such that $u\left(y^{\prime}\right)=y$. For any $x \in u^{-1}(B)$, we have $\alpha(x, y)=\alpha\left(x, u^{*}\left(y^{\prime}\right)\right)$ $=\beta\left(u(x), y^{\prime}\right)=0$. Hence $y \in\left(u^{-1}(B)\right)^{\perp}$.

To prove the converse, we shall consider some linear subspaces. From $u^{-1}(B) \supset \operatorname{ker}(u)$, there is the linear subspace $E_{1}$ such that $u^{-1}(B)=\operatorname{ker}(u) \oplus E_{1}$. Hence $B \subset u\left(E_{1}\right)$. Further there is the linear subspace $E_{2}$ such that $E=\operatorname{ker}(u) \oplus E_{1} \oplus E_{2}$. Let $\tilde{u}$ be the restriction of $u$ on $E_{1} \oplus E_{2}$, then $u$ gives an isomorphism from $E_{1} \oplus E_{2}$ to $\operatorname{Im}(u)$. If $G_{1}=\tilde{u}\left(E_{1}\right), G_{2}=\tilde{u}\left(E_{2}\right)$, then $B \subset G_{1}$. Let $p$ be the projection from $G$ to $G_{1}$.

