17. On Adjoint Maps between Dual Systems

By Perla López DE CICILEO and Kiyoshi ISÉKI Universidad Nacional del Sur Bahía Blanca, Argentina (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1964)

Let E, F be linear spaces, α a bilinear form on $E \times F$. A pair of E, F is called a *dual system* on α if

1) $\alpha(x, y) = 0$ for all $x \in E$ implies y = 0,

2) $\alpha(x, y) = 0$ for all $y \in F$ implies x = 0.

Let E, F be a dual system on α , and let G, H be a dual system on β . If u is a linear map from E to G, then $\beta(u(x), y')$ is bilinear on $G \times H$, where $y' \in H$. Put $\alpha(x, u^*(y')) = \beta(u(x), y')$ for all $x \in E$ and $y' \in H$, if u^* is defined, it is a map from H to F. u^* is called the *algebraic adjoint* map of u. If B is of finite dimension, u^* is always well defined. In a Hilbert space with many inner products, we can define the adjoint on these inner products of a continuous linear map. The other example is the usual adjoint map. Let A be a subset of E (or F), the orthogonal part A^{\perp} is defined by the set $\{y \mid \alpha(x, y)=0$ for all $x \in A\}$ (or $\{x \mid \alpha(x, y)=0$ for all $y \in A$). Similarly we can also consider the orthogonal part for G, H, and β .

We shall consider a system in which the adjoint map is well defined.

Then we have the following fundamental

Proposition 1. For a linear subspace A of E, $u^{*-1}(A^{\perp}) = (u(A))^{\perp}$. Proposition 2. For a linear subspace B of G, $(u^{-1}(B))^{\perp} = u^*(B^{\perp})$.

Proof of Proposition 1. Let $y' \in u^{*-1}(A^{\perp})$, then for all $x \in A$, $0 = \alpha(x, u^*(y')) = \beta(u(x), y')$ and so $y' \in u(A)^{\perp}$. Conversely if $y' \in (u(A))^{\perp}$, then $0 = \beta(u(x), y') = \alpha(x, u^*(y'))$ for all $x \in A$. Hence $u^*(y') \subset A^{\perp}$, and $y' \in u^{*-1}(A^{\perp})$.

Proof of Proposition 2. Let $y \in u^*(B^{\perp})$, there is an element $y' \in B^{\perp}$ such that u(y') = y. For any $x \in u^{-1}(B)$, we have $\alpha(x, y) = \alpha(x, u^*(y'))$ $= \beta(u(x), y') = 0$. Hence $y \in (u^{-1}(B))^{\perp}$.

To prove the converse, we shall consider some linear subspaces. From $u^{-1}(B) \supset \ker(u)$, there is the linear subspace E_1 such that $u^{-1}(B) = \ker(u) \oplus E_1$. Hence $B \subset u(E_1)$. Further there is the linear subspace E_2 such that $E = \ker(u) \oplus E_1 \oplus E_2$. Let \tilde{u} be the restriction of u on $E_1 \oplus E_2$, then u gives an isomorphism from $E_1 \oplus E_2$ to $\operatorname{Im}(u)$. If $G_1 = \tilde{u}(E_1)$, $G_2 = \tilde{u}(E_2)$, then $B \subset G_1$. Let p be the projection from G to G_1 .