16. On Existence of Linear Functionals on Abelian Groups

By Kiyoshi Iséki
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1964)

In their paper [3, p. 147], S. Mazur and W. Orlicz have proved a fundamental existence theorem on linear functional in a linear space. In this Note, we shall prove now a similar theorem on Abelian groups.

Theorem. Let $p(x)$ be a real valued subadditive functional on an Abelian group G, and $x(t)$ a function from an abstract set A to G. Let $\xi(t)$ be a real valued function on A. Then there is a linear functional $f(x)$ satisfying
1)

$$
\begin{array}{ll}
f(x) \leq p(x) & \text { for all } x \in G \\
\xi(x) \leq f(x(t)) & \text { for all } t \in A
\end{array}
$$

if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i} \xi\left(t_{i}\right) \leq p\left(\sum_{i=1}^{n} m_{i} x\left(t_{i}\right)\right) \tag{1}
\end{equation*}
$$

for any finite set $t_{i} \in A$ and non-negative integers m_{i}, where $i=1,2$, \cdots, n and $n=1,2, \cdots$.

The "only if" part is evident. To prove the "if" part, we use the technique by V. Ptak. In the middle of the proof, we need the following Aumann theorem [1].

Aumann theorem. Let G be an Abelian group with a real valued subadditive functional $p(x)$, i. e. $p(x+y) \leq p(x)+p(y)$ and $p(0)=0$. Let H be a subgroup on G and $f(x)$ a linear functional on H, i. e. $f(x+y)=f(x)+f(y)$ for $x, y \in H$. If $f(x) \leq p(x)$ for all $x \in H$, then there is a linear extension F of f such that $F(x) \leq p(x)$ for each $x \in G$.

An elegant proof by G. Mokobdzki is given in a note by P. Krée in the Séminaire Choquet [2]. The present writer can not approach to the original paper [1].

Proof of Theorem. Consider an auxiliary subadditive functional defined by

$$
\tilde{p}(x)=\inf _{\substack{t_{1}, \ldots, t_{n} \\ m_{1}, \ldots, m_{n}}}\left[p\left(x+\sum_{i=1}^{n} m_{i} x\left(t_{i}\right)\right)-\sum_{i=1}^{n} m_{i} \xi\left(t_{i}\right)\right]
$$

where $m_{i}(i=1,2, \cdots, n)$ are non-negative integers. By the condition (1), we have

$$
\sum_{i=1}^{n} m_{i} \xi\left(t_{i}\right) \leq p\left(\sum_{i=1}^{n} m_{i} x\left(t_{i}\right)\right) \leq p\left(x+\sum_{i=1}^{n} m_{i} x\left(t_{i}\right)\right)+p(-x)
$$

Hence $p(x)$ is well defined. On the other hand, we have $-p(-x)$ $\leq \tilde{p}(x) \leq p(x)$, so $p(0)=0$.

