Extension of a Theorem of Hyslop on Absolute 41. Cesàro Summability

By Miss Mira SEN

Department of Post-Graduate Studies and Research in Mathematics, University of Jabalpur, Jabalpur, India (Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1964)

1. Definitions and notations. We shall denote the nth Cesàrosum, Cesàro-mean and Cesàro-transformed term of order κ ($\kappa > -1$) of the series $\sum a_n$ by S_n^{κ} , s_n^{κ} and a_n^{κ} respectively, and the corresponding sum, mean and term for the series $\sum \lambda_n a_n$ by $S_{n,\lambda}^{\epsilon}$, $s_{n,\lambda}^{\epsilon}$ and $a_{n,\lambda}^{\epsilon}$ respectively.

Thus
$$s_n^{\kappa} = \frac{S_n^{\kappa}}{A_n^{\kappa}} = \frac{1}{A_n^{\kappa}} \sum_{\nu=0}^n A_{n-\nu}^{\kappa-1} s_{\nu} = \frac{1}{A_n^{\kappa}} \sum_{\nu=0}^n A_{n-\nu}^{\kappa} a_{\nu},$$

where A_n^{ι} is defined by the identity $(1-x)^{-\kappa-1}=\sum A_n^\kappa x^n$

and

$$\alpha_n^{\kappa} = s_n^{\kappa} - s_{n-1}^{\kappa}$$

Similarly,

$$s_{n,\lambda}^{\kappa} = \frac{S_{n,\lambda}^{\kappa}}{A_{n}^{\kappa}} = \frac{1}{A_{n}^{\kappa}} \sum_{\nu=0}^{n} A_{n-\nu}^{\kappa} \lambda_{\nu} a_{\nu}$$

and

$$a_{n,\lambda}^{\kappa} = s_{n,\lambda}^{\kappa} - s_{n-1,\lambda}^{\kappa}.$$

A series is said to be absolutely summable (C, κ) , or summable $|C,\kappa|,\kappa>-1$, if

 $\sum |a_n^{\kappa}| = \sum |s_n^{\kappa} - s_{n-1}^{\kappa}| < \infty.$

We observe that, by a well-known identity, due to Kogbetliantz,*'

$$a_n^{\kappa} = s_n^{\kappa} - s_{n-1}^{\kappa} = n^{-1} t_n^{\kappa} = n^{-1} (A_n^{\kappa})^{-1} T_n^{\kappa}$$

where t_n^{κ} and T_n^{κ} are the *n*th Cesàro-mean and sum of order κ of the sequence $\{na_n\}$. Thus the summability $|C, \kappa|$ of $\sum a_n$ is the same as the convergence of the series $\sum n^{-1} |t_n^{\kappa}|$, or $\sum n^{-1} (A_n^{\kappa})^{-1} \cdot$ $|T_n^{\kappa}|.$

Moreover, since

$$T_n^{\kappa} = n A_n^{\kappa} a_n^{\kappa},$$

 $A_n^{\kappa} \sim \frac{n^{\kappa}}{\Gamma(\kappa+1)}$, for $\kappa \approx -1, -2, -3, \cdots$, we see that the summability $|C, \kappa|$ of $\sum a_n$ is the same as the convergence of

$$\sum n^{-(\kappa+1)} |na_n^{\kappa}A_n^{\kappa}|.$$

Similarly, according to our notations, the summability |C, p| of

(|x| < 1),

^{*)} Kogbetliantz [3], [4].