41. Extension of a Theorem of Hyslop on Absolute Cesàro Summability

By Miss Mira Sen
Department of Post-Graduate Studies and Research in Mathematics, University of Jabalpur, Jabalpur, India
(Comm. by Kinjirô Kunugi, m.J.A., March 12, 1964)

1. Definitions and notations. We shall denote the nth Cesàrosum, Cesàro-mean and Cesàro-transformed term of order $\kappa(\kappa>-1)$ of the series $\sum a_{n}$ by $S_{n}^{\kappa}, s_{n}^{\kappa}$ and α_{n}^{κ} respectively, and the corresponding sum, mean and term for the series $\sum \lambda_{n} a_{n}$ by $S_{n, \lambda}^{\kappa}, \mathcal{E}_{n, \lambda}^{k}$ and $\alpha_{n, \lambda}^{\kappa}$ respectively.

Thus

$$
s_{n}^{\kappa}=\frac{S_{n}^{\kappa}}{A_{n}^{\kappa}}=\frac{1}{A_{n}^{\epsilon}} \sum_{\nu=0}^{n} A_{n-\nu}^{\kappa-1} s_{\nu}=\frac{1}{A_{n}^{\epsilon}} \sum_{\nu=0}^{n} A_{n-\nu}^{\kappa} a_{\nu},
$$

where A_{n}^{ε} is defined by the identity

$$
(1-x)^{-\kappa-1}=\sum A_{n}^{*} x^{n} \quad(|x|<1)
$$

and

$$
\alpha_{n}^{\kappa}=s_{n}^{\kappa}-s_{n-1}^{\kappa} \cdot
$$

Similarly,

$$
s_{n, \lambda}^{\kappa}=\frac{S_{n, \lambda}^{e}}{A_{n}^{\kappa}}=\frac{1}{A_{n}^{\kappa}} \sum_{\nu=0}^{n} A_{n-\nu}^{\kappa} \lambda_{\nu} a_{\nu}
$$

and

$$
a_{n, 2}^{\kappa}=s_{n, \lambda}^{\kappa}-s_{n-1, \lambda .}^{\kappa} .
$$

A series is said to be absolutely summable (C, κ), or summable $|C, \kappa|, \kappa>-1$, if

$$
\sum\left|a_{n}^{\kappa}\right|=\sum\left|s_{n}^{\kappa}-s_{n-1}^{\kappa}\right|<\infty .
$$

We observe that, by a well-known identity, due to Kogbetliantz,**

$$
a_{n}^{\kappa}=s_{n}^{\kappa}-s_{n-1}^{\kappa}=n^{-1} t_{n}^{\kappa}=n^{-1}\left(A_{n}^{\kappa}\right)^{-1} T_{n}^{\kappa},
$$

where t_{n}^{κ} and T_{n}^{κ} are the nth Cesàro-mean and sum of order κ of the sequence $\left\{n a_{n}\right\}$. Thus the summability $|C, \kappa|$ of $\sum a_{n}$ is the same as the convergence of the series $\sum n^{-1}\left|t_{n}^{k}\right|$, or $\sum n^{-1}\left(A_{n}^{*}\right)^{-1}$. $\left|T_{n}^{\epsilon}\right|$.

Moreover, since

$$
T_{n}^{\kappa}=n A_{n}^{\kappa} a_{n}^{\kappa},
$$

and

$$
A_{n}^{\kappa} \sim \frac{n^{\kappa}}{\Gamma(\kappa+1)}, \quad \text { for } \kappa \neq-1,-2,-3, \cdots,
$$

we see that the summability $|C, \kappa|$ of $\sum a_{n}$ is the same as the convergence of

$$
\sum n^{-(\kappa+1)}\left|n a_{n}^{\kappa} A_{n}^{\kappa}\right| .
$$

Similarly, according to our notations, the summability $|C, p|$ of
*) Kogbetliantz [3], [4].

