[Vol. 40,

39. On Metrizability of M-Spaces

By Akihiro OKUYAMA

Osaka Gakugei Daigaku

(Comm. by Kinjirô Kunugi, M.J.A., March 12, 1964)

§ 1. Introduction. Let X be a topological space. An open covering $\mathbb U$ of X is said to be a star-refinement of another open covering $\mathfrak B$ of X if the covering $\{St(U,\mathbb U)|U\in\mathbb U\}$ is a refinement of $\mathfrak B$ where $St(A,\mathbb U)$ means the union of the sets U of $\mathbb U$ such that $A\cap U\neq \phi$. A sequence $\{\mathbb U_n|n=1,2,\cdots\}$ of open coverings of X is said to be normal if $\mathbb U_{n+1}$ is a star-refinement of $\mathbb U_n$ for $n=1,2,\cdots$.

We shall say that a topological space X is an M-space if there exists a normal sequence $\{\mathfrak{U}_n|n=1,2,\cdots\}$ of open coverings of X satisfying the condition (*) below:

If a family $\mathfrak A$ consisting of a countable number of subsets of X has the finite intersection property and contains as a member a subset of $St(x_0, \, \mathbb{I}_n)$ for every n and for some fixed point x_0 of X, then $\bigcap \{\bar{A} \mid A \in \mathfrak{A}\} \neq \phi$.

Metrizable spaces and countably compact spaces are clearly M-spaces.

The notion of M-spaces was introduced and discussed in [5].

Theorem 1. Let X be a topological space. In order that X be metrizable it is necessary and sufficient that X be a paracompact Hausdorff M-space and that the product space $X \times X$ be perfectly normal.

More precisely, we shall obtain the theorem below:

Theorem 1'. Let X be a topological space. In order that X be metrizable it is necessary and sufficient that X be a paracompact Hausdorff M-space and that the diagonal Δ of the product space $X \times X$ be a G_{δ} -set in $X \times X$.

It is easily seen that Theorem 1 is deduced from Theorem 1'. Therefore, we have only to prove Theorem 1'; this will be done in §2.

A completely regular space X is said to be *absolute* G_{δ} if it is a G_{δ} -set in every extension of it, that is, if X is a dense subset of a completely regular space Y, then X is a G_{δ} -set in Y.

It is well known that a metrizable space is absolute G_{δ} if and only if it is completely metrizable (cf. [1]).

Z. Frolik has proved that a paracompact normal space which is absolute G_{δ} is an M-space. More generally, K. Morita ([7], [8]) has proved that a paracompact normal space which is G_{δ} in a countably compact space is an M-space.