38. The Mean Continuous Perron Integral

By Yôto KUBOTA

Hokkaido Gakugei University (Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1964)

1. Introduction. H. W. Ellis [2] has introduced the GM-integral descriptively whose indefinite integral is mean continuous. The GM-integral is an extension of the CP-integral defined by J. C. Burkill [1]. The aim of this paper is to define an integral of the Perron type which is equivalent to the GM-integral. We call this integral the mean continuous Perron integral or MP-integral.

In §2 we shall define the MP-integral and prove its fundamental properties. The equivalence between the GM-integral and the MP-integral will be considered in §3. The proof is essentially based on the method used by J. Ridder ([4], pp. 7-8).

2. The mean continuous Perron integral.

Definition 2.1 ([2], p. 114). If f(x) is general Denjoy integrable on [a, b] then we write

$$M(f, a, b) = \frac{1}{b-a} \int_a^b f(t) dt.$$

If $\lim_{h\to 0} M(f, c, c+h) = f(c)$ then f(x) is termed mean continuous or *M*-continuous at *c*.

Definition 2.2. A finite function f(x) is said to be <u>AC</u> on a set *E* if to each positive number ε , there exists a number $\delta > 0$ such that

 $\Sigma\{f(b_k)-f(a_k)\}>-\varepsilon$

for all finite non-overlapping sequence of intervals $\{(a_k, b_k)\}$ with end points on E and such that $\Sigma(b_k - a_k) < \delta$. There is a corresponding definition of \overline{AC} on E. If the set E is the sum of a countable number of sets E_k on each of which f(x) is \underline{AC} then f(x) is termed \underline{ACG} on E. Similarly we can define \overline{ACG} on E. If f(x) is both \overline{ACG} and \overline{ACG} on E then we say that f(x) is ACG on E.

Definition 2.3 ([2], p. 115). A finite function f(x) is said to be (\underline{ACG}) on E if E is the sum of a countable number of closed sets $\overline{E_k}$ on each of which f(x) is \underline{AC} . If " \underline{AC} " is replaced by " \overline{AC} ", then the corresponding definition of (\overline{ACG}) is obtained. If f(x) is both (\underline{ACG}) and (\overline{ACG}) on E then f(x) is termed (\underline{ACG}) on E.

Definition 2.4. Let f(x) be defined on an interval [a, b]. The function U(x) [L(x)] is called upper [lower] function of f(x) in [a, b] if