37. On Completeness of Royden's Algebra

By Michihiko Kawamura
Department of Mathematics, Shimane University
(Comm. by Kinjirô Kunugi, m.J.A., March 12, 1964)

Let R be a Riemann surface and $\boldsymbol{M}(R)$ be Royden's algebra associated with R, i.e. the totality of bounded continuous a.c.T. functions*) on R with finite Dirichlet integrals. We say that a sequence $\left\{\varphi_{n}\right\}$ of functions in $\boldsymbol{M}(R)$ converges to a function φ in C-topology if it converges uniformly on any compact subset of R. If a sequence $\left\{\varphi_{n}\right\}$ is bounded and converges to φ in C-topology, then we say that $\left\{\varphi_{n}\right\}$ converges to φ in B-topology. If the Dirichlet integral $\iint_{\boldsymbol{R}} d\left(\varphi_{n}-\varphi\right) \wedge * \overline{d\left(\varphi_{n}-\varphi\right)}$ tends to zero, then we say that $\left\{\varphi_{n}\right\}$ converges to φ in D-topology. Finally a sequence $\left\{\varphi_{n}\right\}$ converges to φ in $B D$-topology, if it converges in B-topology and D-topology. Let $\boldsymbol{M}_{0}(R)$ be the totality of functions in $\boldsymbol{M}(R)$ with compact supports in R and $\boldsymbol{M}_{\Delta}(R)$ be the potential subalgebra of $\boldsymbol{M}(R)$, i.e. the closure of $\boldsymbol{M}_{0}(R)$ in $B D$-topology. Let $\Gamma(R)$ be the totality of differentials α of the first order on R with finite Dirichlet integrals. Then $\Gamma(R)$ is a Hilbert space with an inner product $(\alpha, \beta)=\iint_{R} \alpha \wedge^{*} \bar{\beta}$. Clearly $\{d f ; f \in \boldsymbol{M}(R)\} \subset \Gamma(R)$. The algebras $\boldsymbol{M}(R)$ and $\boldsymbol{M}_{\Delta}(R)$ are complete with respect to $B D$-topology respectively. (cf. Lemma 1.5, p. 208 in Nakai [3]). Moreover we have the following theorem.

Theorem 1. If $\varphi_{n} \in \boldsymbol{M}(R)$ and if (1) $\varphi_{n} \rightarrow \varphi$ in C-topology and φ is bounded, (2) the Dirichlet integral $D_{R}\left(\varphi_{n}\right)$ is bounded, then (3) $\varphi \in \boldsymbol{M}(R)$, (4) $d \varphi_{n} \rightarrow d \varphi$ weakly in $\Gamma(R)$.

Proof. Generally, a bounded subset of a Hilbert space is weakly compact (cf. ch. 1, § 4 in Nagy [2]). Since $\left\{d \varphi_{n}\right\}$ is bounded in $\Gamma(R)$ by condition (2), there exists a subsequence $\left\{d \varphi_{n_{k}}\right\}$ such that $\left\{d \varphi_{n_{k}}\right\}$ converges to some $\alpha \in \Gamma(R)$ weakly in $\Gamma(R)$. We shall show that $\varphi \in \boldsymbol{M}(R)$ and $d \varphi=\alpha$. Let $z=x+i y$ be a local parameter in R and let G be a square domain: $-1<x<1,-1<y<1$ in the coordinate neighborhood of z. We put $\alpha=\alpha(x, y) d x+b(x, y) d y$ in G and we take a differential β such that $\beta=\bar{\phi} d y$ in G and $\beta=0$ outside of G, where ϕ is in the class C^{∞} and its support is contained in G. Then we have

$$
(\alpha, \beta)=\iint \alpha \wedge^{*} \bar{\beta}=\iint_{Q} a \phi d x d y
$$

By integration by parts, we get

[^0]
[^0]: *) For the definition of a.c.T. functions, refer to A. Pfluger: Comment. Math. Helvt., 33, 23-33 (1959).

