37. On Completeness of Royden's Algebra

By Michihiko KAWAMURA

Department of Mathematics, Shimane University (Comm. by Kinjirô Kunugi, M.J.A., March 12, 1964)

Let R be a Riemann surface and M(R) be Royden's algebra associated with R, i.e. the totality of bounded continuous a.c.T. functions * on R with finite Dirichlet integrals. We say that a sequence $\{\varphi_n\}$ of functions in M(R) converges to a function φ in C-topology if it converges uniformly on any compact subset of R. If a sequence $\{\varphi_n\}$ is bounded and converges to φ in C-topology, then we say that $\{\varphi_n\}$ converges to φ in B-topology. If the Dirichlet integral $\int \int d(\varphi_n - \varphi) \wedge *\overline{d(\varphi_n - \varphi)}$ tends to zero, then we say that $\{\varphi_n\}$ converges to φ in D-topology. Finally a sequence $\{\varphi_n\}$ converges to φ in BD-topology, if it converges in B-topology and D-topology. Let $M_0(R)$ be the totality of functions in M(R) with compact supports in R and $M_{A}(R)$ be the potential subalgebra of M(R), i.e. the closure of $M_0(R)$ in BD-topology. Let $\Gamma(R)$ be the totality of differentials α of the first order on R with finite Dirichlet integrals. Then $\Gamma(R)$ is a Hilbert space with an inner product $(\alpha, \beta) = \iint \alpha \wedge \bar{\beta}$. Clearly $\{df; f \in M(R)\} \subset \Gamma(R)$. The algebras M(R) and $M_{\perp}(R)$ are complete with respect to BD-topology respectively. (cf. Lemma 1.5, p. 208 in Nakai $\lceil 3 \rceil$). Moreover we have the following theorem.

Theorem 1. If $\varphi_n \in M(R)$ and if (1) $\varphi_n \rightarrow \varphi$ in C-topology and φ is bounded, (2) the Dirichlet integral $D_R(\varphi_n)$ is bounded, then (3) $\varphi \in M(R)$, (4) $d\varphi_n \rightarrow d\varphi$ weakly in $\Gamma(R)$.

Proof. Generally, a bounded subset of a Hilbert space is weakly compact (cf. ch. 1, § 4 in Nagy [2]). Since $\{d\varphi_n\}$ is bounded in $\Gamma(R)$ by condition (2), there exists a subsequence $\{d\varphi_{n_k}\}$ such that $\{d\varphi_{n_k}\}$ converges to some $\alpha \in \Gamma(R)$ weakly in $\Gamma(R)$. We shall show that $\varphi \in M(R)$ and $d\varphi = \alpha$. Let z = x + iy be a local parameter in R and let G be a square domain: -1 < x < 1, -1 < y < 1 in the coordinate neighborhood of z. We put $\alpha = a(x, y)dx + b(x, y)dy$ in G and we take a differential β such that $\beta = \overline{\phi}dy$ in G and $\beta = 0$ outside of G, where ϕ is in the class C^{∞} and its support is contained in G. Then we have

$$(\alpha, \beta) = \iint \alpha \wedge *\overline{\beta} = \iint_{\alpha} a\phi dxdy.$$

By integration by parts, we get

^{*)} For the definition of a.c.T. functions, refer to A. Pfluger: Comment. Math. Helvt., 33, 23-33 (1959).