No. 3]

34. A Characterization of Finite Projective Linear Groups

By Tosiro Tsuzuku

Mathematical Institute, Nagoya University (Comm. by Kenjiro SHODA, M.J.A., March 12, 1964)

We say that a group G admits a Bruhat decomposition if it satisfies the following conditions (1) through (11).

- (1) G has three subgroups U, H, and W.
- (2) H normalizes U.
- (3) H is a normal subgroup of W.
- (4) $W/H=\mathfrak{B}$ is a finite group.
- (5) For each $w \in \mathfrak{W}$, U has subgroups U'_w and U''_w such that $U = U'_w U''_w$. For each $w \in \mathfrak{W}$, choose a representative $\omega(w)$ in W.
 - (6) $\omega(w)^{-1}U'_w\omega(w)\subset U$.
- (7) $G = \sum_{w \in \mathfrak{W}} HU_{\omega}(w)U''_{w}$, and in the representation $g = hu_{\omega}(w)u''$ with $h \in H$, $u \in U$, $w \in \mathfrak{W}$ and $u'' \in U''_{w}$, each factor is unique.
- (8) There is a distinguished set \mathfrak{F} of elements of \mathfrak{W} of period 2 which generates \mathfrak{W} .
 - (9) For $w \in \mathfrak{F}$ and $s \in \mathfrak{B}$, $U''_w \subseteq U'_s$ implies $U''_w \subseteq U'_{sw}$.
 - (10) For $w \in \mathfrak{F}$, $HU + HU\omega(w)U''_w$ is a subgroup of G.
 - (11) There is an $x \in U$ such that $x \in U'_w$ implies w = 1.

The group $\mathfrak B$ is called Weyl group associated to this Bruhat decomposition and the set $\mathfrak F$ is called the canonical set of generators of $\mathfrak B$.

It is well known that the projective special linear group PSL (n,q), operating on the Desarguesian projective space of dimension n-1 over Galois field GF(q), admits a Bruhat decomposition with the symmetric group S_n of degree n as Weyl group and with the set $\mathfrak{F}=\{(1,2),(2,3),\cdots,(n-1,n)\}$ as the canonical set of generators of \mathfrak{B} , where elements of S_n operate on n letters $1,2,\cdots,n$.

Recently D. G. Higman and J. E. Maclaughlin proved in [2] that a finite group G admitting a Bruhat decomposition with the symmetric group of degree 3 as Weyl group has a representation θ on a finite Desarquesian projective plane such that $\theta(G)$ contains the group PSL(3, q). As a generalization of this theorem, we prove the following

Theorem. Let a finite group G admit a Bruhat decomposition with the symmetric group S_n of degree $n \ge 4$ as Weyl group $\mathfrak B$ and with the canonical set $\mathfrak F = \{(1,2), \cdots, (n-1,n)\}$ of generators of $\mathfrak B$ where elements of S_n operate on n letters $1, \cdots, n$. Then G has a representation θ on a finite projective space such that $\theta(G)$ contains

¹⁾ See R. Steinberg [4].