54. A Note on the Galois Cohomology Group of the Ring of Integers in an Algebraic Number Field

By Hideo Yokoi
Nagoya Institute of Technology, Nagoya
(Comm. by Zyoiti Suetuna, M.J.A., April 13, 1964)

1. Introduction. Let K be a finite Galois extension of a finite algebraic number field F and let $G=G(K / F)$ be the Galois group of K / F. Denote by \mathfrak{o}_{K} and \mathfrak{o}_{F} the rings of integers in K and F respectively. As usual, we shall denote by $H^{r}(G, A)$ the r-dimensional Galois cohomology group of G acting on a G-module A. Following Artin-Tate-Chevalley, we shall consider $H^{r}(G, A)$ also for negative r.

In (1) we proved the following
Theorem 1. If we assume that the 0-dimensional Galois cohomology group $H^{0}\left(G, \mathrm{o}_{K}\right)$ of o_{K} with respect to K / F is trivial, then the Galois cohomology group of D_{K} with respect to K / Ω is trivial for every dimension and for any intermediate field Ω of K / F.

Later we obtained in (2) and (3) the following
Theorem 2. Let K / F be a cyclic extension of prime order p. Then, for every dimension r, all the Galois cohomology groups $H^{r}\left(G, \mathrm{o}_{K}\right)$ of o_{K} with respect to K / F are isomorphic with each other.

From these results, it is generally conjectured that all the Galois cohomology groups $H^{r}\left(G, \mathfrak{o}_{K}\right)$ of \mathfrak{o}_{K} with respect to K / F have the same order. In this note we shall prove that this is in fact the case if K / F is a cyclic extension of any finite degree.
2. Let F be an algebraic number field of degree m and let K / F be a cyclic extension of degree n. Denote by $G=G(K / F)$ the Galois group of K / F. Then there exists a number B in K, by the theorem on existence of normal basis, ${ }^{1)}$ such that the conjugates $B^{(0)}, B^{(1)}, \cdots$, $B^{(n-1)}$ of B form a basis of K over F, i.e. a normal basis of K / F. Since we may choose an integer c such that $c B$ becomes an integer in K, we can assume from the beginning, without losing generality, that B is an integer in K.

Further, let $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{m}\right\}$ be an arbitrary integral basis of F, and denote by 0^{*} the module generated by $\omega_{i} B^{(j)}(i=1,2, \cdots, m ; j=0,1$, $\cdots, n-1)$. Since $\omega_{i} B^{(j)}(i=1,2, \cdots, m ; j=0,1, \cdots, n-1)$ are linearly independent over the rational number field Q, the rank of the module 0^{*} is $N=m n$, and $0^{*}=o_{F} B^{(0)}+\mathrm{o}_{F} B^{(1)}+\cdots+o_{F} B^{(n-1)}$ is a direct decomposition of the module o^{*}. Here, o_{F} means the module of all integers

[^0]
[^0]: 1) Cf. e.g. E. Noether [4], M. Deuring [5] etc.
