88. On Subadditive Functionals and Linear Functionals on Abelian Group

By Kiyoshi Iséki

(Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1964)

Recently D. Milman [2] has proved an interesting theorem relating with Hahn-Banach theorem. In this note, we shall consider his result on an Abelian group.

Let G be an Abelian group, and consider a subadditive functional p(x) on G, i.e. $p(x+y) \le p(x) + p(y)$ and p(0)=0.

Define an order $p_2 \prec p_1$ if $p_2(x) \le p_1(x)$ for every $x \in G$. We have a well known theorem by Aumann: There is a linear functional f(x), i.e. f(x+y)=f(x)+f(y) such that $f \prec p$ for each subadditive p (see K. Iséki [1]). Now we have the like of Milman result.

Theorem. Let p(x) be a subadditive functional, not linear functional. Then there is at least one minimal element for p on the order \prec , and its element is linear. The set consisting of all elements of linear functionals f such that $f \prec p$ coincides with the total set of minimal elements for p.

To prove Theorem, we shall use a similar technique by D. Milman.

Proof. Since p(x) is not linear, there are two elements x_1, y_1 such that $p(x_1+y_1) < p(x_1)+p(y_1)$. Let H be the subgroup generated by x_1, y_1 , then by Aumann theorem, there is a linear functional f(x) on H such that $f(x) \le p(x)$ for $x \in H$. Put

$$p_1(x) = \inf_{y \in H} \{f(y) + p(x-y)\}$$

for $x \in G$. Then $-p(-x) \leq f(y) + p(x-y)$ implies $-p(-x) \leq p_1(x) \leq p(x)$. Therefore $p_1(x)$ is well-defined on G. Further, we have $p_1(x+y) \leq p_1(x) + p_1(y)$ and $-p(-y) \leq f(y) \leq p(y)$ for $y \in H$ implies $p_1(0) = 0$. On the other hand, from

 $\begin{array}{c} f(x_1) + f(y_1) = f(x_1 + y_1) \leq p(x_1 + y_1) < p(x_1) + p(y_1) \\ \text{and } f(x_1) \leq p(x_1), \ f(y_1) \leq p(y_1), \ \text{for example, we have} \quad p(x_1) - f(x_1) > 0. \\ \text{Hence} \end{array}$

 $p_1(x_1) \le f(x_1) + p(x_1 - x_1) = f(x_1) < p(x_1),$

and so $p_1 \neq p$ and $p_1 \prec p$.

If $\{p_a\}$ is totally ordered set, then $p = \inf_a p_a$ is well-defined and subadditive on G. Hence at least one minimal element p exists by Zorn's lemma. Suppose that p is not linear, then there is a subadditive functional p_1 such that $p_1 \prec p$ by the first step of the proof. This is a contradiction.

If f is linear and $p_1 \prec f$, then we have $f(x) = -f(-x) \le -p_1(-x) \ge -p_1(-x) \ge -p_1(-x) \ge -p_1(-x) \ge -p_1(-x) \ge -p_1(-x) \ge -p_1($